Bilangan asli: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Dedhert.Jr (bicara | kontrib) gambar lebih baik Tag: Suntingan visualeditor-wikitext |
Fitur saranan suntingan: 2 pranala ditambahkan. |
||
(4 revisi perantara oleh 2 pengguna tidak ditampilkan) | |||
Baris 1:
[[Berkas:Three Baskets with Apples.svg|ka|jmpl|Bilangan asli dapat digunakan untuk menghitung (satu apel, dua apel, tiga apel, ...).]]
Dalam [[matematika]], terdapat dua kesepakatan mengenai himpunan '''bilangan asli'''. Yang pertama definisi menurut matematikawan tradisional, yaitu himpunan '''bilangan bulat positif''' yang bukan nol {1, 2, 3, 4, ...}. Sedangkan yang kedua definisi oleh logikawan dan ilmuwan komputer, adalah himpunan [[nol]] dan bilangan bulat positif {0, 1, 2, 3, ...}. Bilangan asli merupakan salah satu konsep matematika yg paling sederhana dan termasuk konsep pertama yang bisa dipelajari dan dimengerti oleh manusia, bahkan beberapa penelitian menunjukkan beberapa jenis kera juga bisa menangkapnya.
Baris 15:
Kemajuan besar pertama dalam abstraksi adalah penggunaan [[sistem bilangan]] untuk melambangkan angka-angka. Ini memungkinkan pencatatan bilangan besar. Sebagai contoh, orang-orang [[Babylonia]] mengembangkan sistem berbasis posisi untuk angka 1 dan 10. Orang [[Mesir]] kuno memiliki sistem bilangan dengan [[hieroglif]] berbeda untuk 1, 10, dan semua pangkat 10 sampai pada satu juta. Sebuah ukuran batu dari [[Karnak]], tertanggal sekitar [[1500]] SM dan sekarang berada di Louvre, Paris, melambangkan 276 sebagai 2 ratusan, 7 puluhan dan 6 satuan; hal yang sama dilakukan untuk angka 4622.
Kemajuan besar lainnya adalah pengembangan gagasan angka nol sebagai bilangan dengan lambangnya tersendiri. Nol telah digunakan dalam [[notasi]] posisi sedini 700 SM oleh orang-orang Babylon, namun mereka melepaskan bila menjadi lambang terakhir pada bilangan tersebut.
Pada abad ke-[[19]] dikembangkan definisi bilangan asli menggunakan [[teori himpunan]]. Dengan definisi ini, dirasakan lebih mudah memasukkan nol (berkorespondensi dengan [[himpunan kosong]]) sebagai bilangan asli, dan sekarang menjadi konvensi dalam bidang teori himpunan, [[logika]] dan [[ilmu komputer]].<ref>{{cite web |author=Michael L. Gorodetsky |url=http://hbar.phys.msu.ru/gorm/chrono/paschata.htm |title=Cyclus Decemnovennalis Dionysii - Nineteen year cycle of Dionysius |publisher=Hbar.phys.msu.ru |date=2003-08-25 |accessdate=2012-02-13 |archive-date=2019-01-15 |archive-url=https://web.archive.org/web/20190115083618/http://hbar.phys.msu.ru/gorm/chrono/paschata.htm |dead-url=yes }}</ref> Matematikawan lain, seperti dalam bidang [[teori bilangan]], bertahan pada tradisi lama dan tetap menjadikan 1 sebagai bilangan asli pertama.<ref>Ini umum di dalam buku ajar mengenai [[analisis real]]. Sebagai contoh, lihat {{harvp|Carothers|2000}}, hlm. 3; atau {{harvp|Thomson|Bruckner|Bruckner|
== Penulisan ==
Himpunan bilangan asli umumnya dilambangkan <math> \mathbf{N} </math> atau <math>\mathbb{N}</math>. Ada sumber yang terkadang melambangkan himpunan bilangan asli sebagai <math> J </math>.<ref>{{
|url = https://archive.org/details/1979RudinW▼
|title = Principles of Mathematical Analysis▼
|last = Rudin |first=W.▼
|publisher=McGraw-Hill▼
|year=1976▼
|isbn=978-0-07-054235-8▼
|location = New York▼
|page=25}}</ref>▼
Karena bilangan asli dapat mengandung {{math|0}} atau tidak, adakala pentingnya untuk mengetahui versi manakah yang dimaksud. Ini sering kali dinyatakan berdasarkan konteks, tetapi juga dapat dinyatakan melalui penggunaan subskrip atau superskrip di notasinya, seperti:<ref>{{
* Bilangan asli tanpa adanya nol: <math>\{1,2,...\}=\mathbb{N}^*= \mathbb N^+=\mathbb{N}_0\smallsetminus\{0\} = \mathbb{N}_1</math>
* Bilangan asli dengan nol: <math>\;\{0,1,2,...\}=\mathbb{N}_0=\mathbb N^0=\mathbb{N}^*\cup\{0\}</math>
Baris 44 ⟶ 53:
=== Hubungan antara penjumlahan dan perkalian ===
Penambahan dan perkalian adalah kompatibel, yang dinyatakan dalam [[hukum distribusi|distribusi]]: {{math|''a'' × (''b'' + ''c'') {{=}} (''a'' × ''b'') + (''a'' × ''c'')}}. Sifat penjumlahan dan perkalian ini membuat bilangan asli sebagai turunan dari [[komutatif]] [[semiring]]. Semiring adalah generalisasi aljabar dari bilangan asli dengan perkalian tidak seharusnya komutatif. Kurangnya [[Invers aditif|aditif invers]], yang ekuivalen dengan fakta bahwa <math> \N </math> tidak [[Ketertutupan (matematika)|tertutup]] di bawah pengurangan (yaitu, mengurangkan satu bilangan asli dari bilangan asli yang lain tidak selalu menghasilkan bilangan asli), berarti bahwa <math> \N </math> ''bukanlah'' [[gelanggang (matematika)|gelanggang]]; melainkan [[semiring]].
Bila bilangan asli diambil sebagai "tidak termasuk 0", dan "mulai dari 1", definisi dari + dan × dinyatakan seperti di atas, kecuali diawali dengan {{math|''a'' + 1 {{=}} ''S''(''a'')}} and {{math|''a'' × 1 {{=}} ''a''}}.
Baris 50 ⟶ 59:
=== Sifat aljabar yang dipenuhi bilangan asli===
Operasi penambahan (+) dan perkalian (×) pada bilangan asl, seperti yang didefinisikan sebelumnya, memiliki beberapa sifat-sifat aljabar:
* [[Ketertutupan (matematika)|Ketertutupan]] di bawah penambahan dan perkalian: untuk semua bilangan asli {{math|''a''}} dan {{math|''b''}}, maka {{math|''a'' + ''b''}} dan {{math|''a'' × ''b''}} adalah bilangan asli.<ref>{{
| last1 = Fletcher | first1 = Harold▼
* [[Sifat asosiatif|Pengelompokan]]: untuk semua bilangan asli {{math|''a''}}, {{math|''b''}}, dan {{math|''c''}}, maka {{math|''a'' + (''b'' + ''c'') {{=}} (''a'' + ''b'') + ''c''}} dan {{math|''a'' × (''b'' × ''c'') {{=}} (''a'' × ''b'') × ''c''}}.<ref>{{harvp|Davisson|1910}}, hlm. 2. "Addition of natural numbers is associative" [Penambahan dari bilangan asli adalah asosiatif (pengelompokan)]</ref>▼
| last2 = Howell | first2 = Arnold A.▼
* [[Sifat komutatif|Pertukaran]]: untuk semu bilangan asli {{math|''a''}} dan {{math|''b''}}, maka {{math|''a'' + ''b'' {{=}} ''b'' + ''a''}} dan {{math|''a'' × ''b'' {{=}} ''b'' × ''a''}}.<ref>{{harvp|Brandon|Brown|Gundlach|Cooke|1962}}, hlm. 25.</ref>▼
| date = 2014-05-09▼
| title = Mathematics with Understanding▼
| publisher = Elsevier▼
| isbn = 978-1-4832-8079-0▼
| quote = ...the set of natural numbers is closed under addition... set of natural numbers is closed under multiplication" [...himpunan bilangan asli tertutup di bawah penambahan... himpunan bilangan asli tertutup di bawah perkalian}}</ref>
▲* [[Sifat asosiatif|Pengelompokan]]: untuk semua bilangan asli {{math|''a''}}, {{math|''b''}}, dan {{math|''c''}}, maka {{math|''a'' + (''b'' + ''c'') {{=}} (''a'' + ''b'') + ''c''}} dan {{math|''a'' × (''b'' × ''c'') {{=}} (''a'' × ''b'') × ''c''}}.<ref>{{
| last = Davisson | first = Schuyler Colfax▼
| title = College Algebra▼
| date = 1910▼
| publisher = Macmillian Company▼
| url = https://books.google.com/books?id=E7oZAAAAYAAJ&pg=PA2▼
| quote = Addition of natural numbers is associative. [Penambahan dari bilangan asli adalah asosiatif (pengelompokan).]}}</ref>▼
▲* [[Sifat komutatif|Pertukaran]]: untuk semu bilangan asli {{math|''a''}} dan {{math|''b''}}, maka {{math|''a'' + ''b'' {{=}} ''b'' + ''a''}} dan {{math|''a'' × ''b'' {{=}} ''b'' × ''a''}}.<ref>{{
| last1 = Brandon | first1 = Bertha (M.)▼
| last2 = Brown | first2 = Kenneth E.▼
| last3 = Gundlach | first3 = Bernard H.▼
| last4 = Cooke | first4 = Ralph J.▼
| page = 25
| title = Laidlaw mathematics series▼
| publisher = Laidlaw Bros.▼
| volume = 8
| lang = en
| url = https://books.google.com/books?id=xERMAQAAIAAJ&newbks=0&printsec=frontcover&dq=Natural+numbers+commutative&q=Natural+numbers+commutative&hl=en}}</ref>▼
* Keberadaan [[elemen identitas]]: untuk setiap bilangan asli {{math|''a''}}, {{math|''a'' + 0 {{=}} ''a''}} dan {{math|''a'' × 1 {{=}} ''a''}}.
* [[Sifat distributif|Distribusi]] dari perkalian atas penambahan untuk semua bilangan asli {{math|''a''}}, {{math|''b''}}, dan {{math|''c''}}, {{math|''a'' × (''b'' + ''c'') {{=}} (''a'' × ''b'') + (''a'' × ''c'')}}.
Baris 62 ⟶ 100:
== Lihat pula ==
{{Portal|Matematika}}
* [[Bilangan#Klasifikasi]] untuk sistem bilangan lain (seperti bilangan rasional, bilangan real, [[bilangan kompleks]], dan lain sebagainya.)
* [[Himpunan terhitung]]
* [[Masalah identifikasi Benacerraf]]
Baris 68 ⟶ 106:
== Catatan ==
{{notelist}}
== Referensi ==
{{reflist}}
==
{{refbegin|2}}
▲ | last1 = Brandon | first1 = Bertha (M.)
▲ | last2 = Brown | first2 = Kenneth E.
▲ | last3 = Gundlach | first3 = Bernard H.
▲ | last4 = Cooke | first4 = Ralph J.
▲ | date = 1962
▲ | title = Laidlaw mathematics series
▲ | publisher = Laidlaw Bros.
▲ | volume = 8
▲ | lang = en
▲ | url = https://books.google.com/books?id=xERMAQAAIAAJ&newbks=0&printsec=frontcover&dq=Natural+numbers+commutative&q=Natural+numbers+commutative&hl=en}}
* {{cite book
|last=Carothers |first=N.L.
Baris 92 ⟶ 121:
|via=Google Books
|url=https://books.google.com/books?id=4VFDVy1NFiAC&q=natural+numbers#v=onepage&q=%22natural%20numbers%22&f=false
|ref = {{harvid|Carothers|2000}}
}}
▲ | last = Davisson | first = Schuyler Colfax
▲ | title = College Algebra
▲ | date = 1910
▲ | publisher = Macmillian Company
▲ | lang = en
▲ | url = https://books.google.com/books?id=E7oZAAAAYAAJ&pg=PA2
▲ | quote = Addition of natural numbers is associative.}}
▲ | last1 = Fletcher | first1 = Harold
▲ | last2 = Howell | first2 = Arnold A.
▲ | date = 2014-05-09
▲ | title = Mathematics with Understanding
▲ | publisher = Elsevier
▲ | isbn = 978-1-4832-8079-0
▲ | lang = en
▲ | url = https://books.google.com/books?id=7cPSBQAAQBAJ&pg=PA116}}
▲* {{cite book |last1=Grimaldi |first1=Ralph P. |title=Discrete and Combinatorial Mathematics: An applied introduction |publisher=Pearson Addison Wesley |isbn=978-0-201-72634-3 |edition=5 |year=2004}}
▲ |url = https://archive.org/details/1979RudinW
▲ |title = Principles of Mathematical Analysis
▲ |last = Rudin |first=W.
▲ |publisher=McGraw-Hill
▲ |year=1976
▲ |isbn=978-0-07-054235-8
▲ |location = New York
▲ |page=25}}
* {{cite book
Baris 131 ⟶ 128:
|last2=Bruckner |first2=Judith B.
|last3=Bruckner |first3=Andrew M.
|year=2008 |edition=
|title=Elementary Real Analysis
|publisher=ClassicalRealAnalysis.com
Baris 137 ⟶ 134:
|via=Google Books
|url=https://books.google.com/books?id=vA9d57GxCKgC
|ref = {{harvid|Thomson|Bruckner|Bruckner|2008}}
}}
{{refend}}
|