0 (angka): Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Tidak ada ringkasan suntingan
Tag: Suntingan perangkat seluler Suntingan peramban seluler
Dewinta88 (bicara | kontrib)
Fitur saranan suntingan: 3 pranala ditambahkan.
 
(30 revisi perantara oleh 13 pengguna tidak ditampilkan)
Baris 1:
{{disambiginfo|0}}{{Tanpa referensi|date=Desember 2021}}{{Infobox numberMuhammad Qangka zeao6soso zunizeableade sapuCakqangkanumber
| number = 0
| factorization =<math> 0 </math>
| cardinal = 0 {{br}} kosong {{br}} oh {{br}} nil {{br}} nol {{br}} nihil
| roman unig1 symbolunicode = {{resize|150%|٠,0}}tidak ada
| divisor = semua bilangan lain
| lang1 = [[Bahasa Arab|Arab]]
| lang1 symbol = {{resize|150%|٠,0}}
| lang2 = [[Urdu]]
| lang2 symbol = {{urdu numeral}}
Baris 14 ⟶ 17:
| lang6 = [[Bahasa Jepang|Jepang]]
| lang6 symbol = 零, 〇
| lang7 = [[Bahasa ThaiKhmer|ThaiKhmer]]
| lang7 symbol = ០
| lang8 = [[Bahasa Thai|Thai]]
| lang8 symbol = ๐
}}
'''0''' ('''sifar, nol''' atau kosong'''sifar)''' adalah suatu [[angkabilangan]] danyang digunakan untuk mewakili suatu [[digit|digit angkabesaran]] yang digunakankosong. untukMenambahkan mewakili0 angkake dalamsebarang angka.bilangan Angkatidak nolakan memainkanmengubah perananbilangan pentingtersebut. dalamDalam terminologi matematika, 0 adalah [[matematikaidentitas penambahan]] sebagaidari identitas[[bilangan tambahanbulat]], bagi[[bilangan rasional]], [[bilangan bulatriil]], [[bilangan realkompleks]], dan strukturbanyak [[struktur aljabar]] lainnya. SebagaiMengalikan sebarang bilangan dengan 0 akan menghasilkan angka0, dan sebagai akibatnya, [[pembagian oleh nol]] digunakantidak sebagaimemiliki tempatmakna dalam sistem [[nilai tempataritmetika]].
 
Sebagai [[digit|angka]], 0 memainkan peran penting dalam notasi [[Sistem bilangan desimal|desimal]], yakni untuk menyatakan [[Perpangkatan bilangan 10|perpangkatan bilangan sepuluh]] yang tidak digunakan dalam menentukan total. Sebagai contoh, "205" dalam desimal mengartikan dua ratus, tidak ada sepuluh, dan lima (bilangan) satu. Prinsip yang sama juga digunakan [[Notasi posisional|notasi-notasi nilai-tempat]] yang menggunakan basis selain sepuluh, seperti [[Sistem bilangan biner|biner]] dan [[heksadesimal]]. Penggunaan bilangan 0 secara modern ini didasarkan dari [[matematika India]] yang disebarkan ke Eropa lewat [[Matematika Islam abad pertengahan|para matematikawan Islam abad pertengahan]] dan dipopulerkan oleh [[Fibonacci]]. Konsep nol juga digunakan secara independen oleh [[peradaban Maya]].
 
== Sejarah ==
Penggunaan angka 0 dalam bilangan digagas oleh ahli matematika India bernama [[Brahmagupta]] (598-670 SM). Ia menyatakan bahwa:
* 0 + angka negatif = angka negatif; dan angka negatif - 0 = angka negatif
* 0 + angka positif = angka positif; dan angka positif - 0 = angka positif
* 0 + 0 = 0 dan 0 - 0 = 0
* 0 - angka negatif = angka positif
* 0 - angka positif = angka negatif
* angka dibagi 0 tidak dapat didefinisikan dan tidak memiliki arti secara aritmetika
 
=== PenggunaanTimur Dekat Kuno ===
[[Angka Mesir]] kuno menggunakan [[Sistem bilangan desimal|basis 10]],<ref>{{Cite web|author1=J J O'Connor|author2=E F Robertson|date=2000|title=Egyptian numerals|url=http://mathshistory.st-andrews.ac.uk/HistTopics/Egyptian_numerals.html|website=[[mathshistory.st-andrews.ac.uk]]|publisher=University of St Andrews|archive-url=https://web.archive.org/web/20191115221313/http://mathshistory.st-andrews.ac.uk/HistTopics/Egyptian_numerals.html|archive-date=15 November 2019|access-date=21 December 2019|url-status=live}}</ref> dengan [[hieroglif]] digunakan untuk mewakili angka, tapi tidak menggunakan [[Notasi posisional|konsep posisional]] (nilai-tempat). Dalam satu [[Papirus Boulaq 18|papirus]] yang ditulis sekitar 1770SM dan berisi catatan pemasukan dan pengeluaran harian dari istana [[firaun]], hieroglif ''[[Nefer|nfr]]'' digunakan untuk menandakan keadaan jumlah bahan makanan yang diterima sama persis dengan jumlah yang dihabiskan. Seorang ahli Mesir, [[Alan Gardiner]], berpendapat bahwa hieroglif ''nfr'' digunakan sebagai simbol untuk angka nol. Simbol yang sama juga digunakan untuk menunjukkan tingkat dasar dalam gambar makam-makam dan piramida-piramida; jarak diukur relatif terhadap tingkat dasar ini (berada di atas atau di bawah).<ref>{{cite journal|last=Lumpkin|first=Beatrice|year=2002|title=Mathematics Used in Egyptian Construction and Bookkeeping|journal=The Mathematical Intelligencer|volume=24|pages=20–25|doi=10.1007/BF03024613|number=2|s2cid=120648746}}</ref>
* Angka nol memainkan peranan penting dalam matematika sebagai identitas tambahan bagi bilangan bulat, bilangan real, dan struktur aljabar lainnya. Sebagai angka, nol digunakan sebagai tempat dalam sistem nilai tempat.
 
Pada kisaran masa 1500&nbsp;SM, [[matematika Babilonia]] memiliki [[sistem bilangan]] posisional [[Seksagesimal|basis 60]] yang canggih. Tidak adanya nilai posisi (atau nol) ditunjukkan dengan adanya ''jarak'' di antara angka-angka [[seksagesimal]]. Sistem bilangan ini berbeda dengan [[sistem bilangan Hindu-Arab]] yang berkembang nantinya, dalam hal tidak dinyatakannya besaran (magnitudo) dari digit seksadesimal; jadi sebagai contoh, digit 1 ([[Berkas:Babylonian_1.svg|20x20px]]) tunggal dapat mewakili 1, 60, 3600 = 60<sup>2</sup>, dst., dan hanya dapat dipahami secara tersirat dari konteks. penanda-tempat mirip-nol hanya digunakan diantara angka-angka, tapi tidak pernah digunakan sendirian atau diakhir dari suatu bilangan.{{sfn|Reimer|2014|p=172}}
== Lihat pula ==
 
* [[-0]]
=== Amerika pra-Kolombus ===
* [[00]]
[[Berkas:Cero_maya.svg|jmpl|Angka nol Maya]]
* [[Himpunan kosong]]
[[Kalender Hitung Panjang|Kalender Hitung Panjang Mesoamerika]] yang dikembangkan di Meksiko bagian selatan-tengah dan Amerika Tengah, memerlukan penggunaan nol sebagai penanda-tempat dalam sistem angka posisional [[vigesimal]] (basis 20). Banyak [[glif]], termasuk [[quatrefoil]] parsial digunakan sebagai simbol nol untuk tanggal Hitung Panjang, dengan yang paling lawas memiliki tanggal 36&nbsp;SM (pada Stela 2 di Chiapa de Corzo, [[Chiapas]]).{{efn|Tidak ada tanggal Hitung Panjang yang secara eksplisit menggunakan angka 0 telah ditemukan sebelum abad ke-3 M. Namun karena sistem Hitung Panjang tidak masuk akal tanpa menggunakan penanda-tempat, dan karena glif-glif Mesoamerikan umumnya tidak ditulis dengan membuat ruang/spasi kosong, tanggal-tanggal tersebut dianggap sebagai bukti tak-langsung bahwa konsep 0 sudah ada pada waktu itu.}}<ref>{{Cite web|title=Cyclical views of time|url=https://www.mexicolore.co.uk/aztecs/calendar/cyclical-views-of-time|website=www.mexicolore.co.uk|access-date=2024-01-20}}</ref>
* [[Teori bilangan]]
 
* [[Titik nol]]
Karena delapan dari tanggal-tanggal Hitung Panjang terlawas terletak di luar daerah Maya,{{sfnp|Diehl|2004|p=186}} umum dipercaya bahwa penggunaan nol di Amerika sudah ada sebelum Maya, dan mungkin penemuan dari [[Olmek]].<ref>{{Cite news|last=Mortaigne|first=Véronique|date=28 November 2014|title=The golden age of Mayan civilisation – exhibition review|url=https://www.theguardian.com/culture/2014/nov/28/mayan-civilisation-paris-exhibition|work=[[The Guardian]]|archive-url=https://web.archive.org/web/20141128222215/http://www.theguardian.com/culture/2014/nov/28/mayan-civilisation-paris-exhibition|archive-date=28 November 2014|access-date=10 October 2015|url-status=live}}</ref> Banyak tanggal Hitung Panjang masa awal berada di daerah Olmek, walaupun peradaban Olmek telah berakhir abad ke-4&nbsp;SM,<ref>{{Citation|last=Cyphers|first=Ann|title=The Olmec, 1800–400 bce|date=2014|work=The Cambridge World Prehistory|pages=1005–1025|editor-last=Renfrew|editor-first=Colin|url=https://www.cambridge.org/core/books/cambridge-world-prehistory/olmec-1800400-bce/2C66AF7B3D041260EE2BFC94DF085029|access-date=2024-08-13|place=Cambridge|publisher=Cambridge University Press|isbn=978-0-521-11993-1|editor2-last=Bahn|editor2-first=Paul}}</ref> beberapa abad sebelum tanggal-tanggal Hitung Panjang.<ref>{{Cite web|title=Expedition Magazine {{!}} Time, Kingship, and the Maya Universe Maya Calendars|url=https://www.penn.museum/sites/expedition/time-kingship-and-the-maya-universe-maya-calendars/|website=Expedition Magazine|language=en|access-date=2024-08-13}}</ref>
* [[Vektor nol]]
 
Walau nol menjadi bagian penting dalam [[angka Maya]], dengan simbol mirip batok bagian bawah [[kura-kura]] untuk mewakili angka nol, hal ini dianggap tidak mempengaruhi sistem-sistem bilangan di [[Dunia Lama]].{{citation needed|date=December 2023}}
 
[[Quipu]], suatu perangkat tali yang bersimpul, yang digunakan di [[Kekaisaran Inca]] dan masyarakat pendahulunya di [[Andes|wilayah Andes]] untuk mencatat akuntansi dan data lainnya, dikodekan dalam sistem posisi [[Sistem bilangan desimal|basis sepuluh]]. Nol diwakili oleh ketiadaan simpul pada posisi yang bersangkutan.<ref>{{Cite web|last=Leon|first=Manuel de|date=2022-12-20|title=Knots representing numbers: The mathematics of the Incas|url=https://english.elpais.com/science-tech/2022-12-20/knots-representing-numbers-the-mathematics-of-the-incas.html|website=EL PAÍS English|language=en-us|access-date=2024-06-05}}</ref>
 
=== Zaman Klasik ===
Peradaban [[Yunani Kuno]] tidak memiliki simbol maupun penanda-tempat angka untuk nol (μηδέν, dilafalkan ''midén'').<ref>{{Cite web|last=Wallin|first=Nils-Bertil|date=19 November 2002|title=The History of Zero|url=http://yaleglobal.yale.edu/about/zero.jsp|website=YaleGlobal online|publisher=The Whitney and Betty Macmillan Center for International and Area Studies at Yale.|archive-url=https://web.archive.org/web/20160825124525/http://yaleglobal.yale.edu/about/zero.jsp|archive-date=25 August 2016|access-date=1 September 2016}}</ref> Menurut matematikawan [[Charles Seife]], bangsa Yunani Kuno baru mulai mengadopsi penanda-tempat nol versi Babilonia untuk menyelesaikan masalah terkait [[astronomi]] setelah 500&nbsp;SM, yang diwakili dengan huruf kecil Yunani ''ό'' (''όμικρον'': [[Omicron|omikron]]). Akan tetapi, setelah menggunakan penanda-tempat nol dalam perhitungan astronomi, mereka umumnya mengubah hasil kembali ke [[angka Yunani]]. Bangsa Yunani Kuno sepertinya memiliki penolakan filosofis untuk menggunakan nol sebagai bilangan.<ref name="Seife2000">{{cite book|last=Seife|first=Charles|date=1 September 2000|url=https://books.google.com/books?id=obJ70nxVYFUC|title=Zero: The Biography of a Dangerous Idea|publisher=Penguin|isbn=978-0-14-029647-1|page=39|oclc=1005913932|author-link=Charles Seife|access-date=30 April 2022}}</ref> Para ahli lain menetapkan tanggal yang lebih muda terkait adopsi parsial Yunani terhadap nol Babilonia, dengan ahli saraf Andreas Nieder menentukan setelah 400&nbsp;SM, dan ahli matematika Robert Kaplan memberikan tanggal setelah [[Perang Alexander Agung|perang Aleksander]].{{sfn|Kaplan|2000|p=17}}<ref name="Nieder2019">{{cite book|last=Nieder|first=Andreas|date=19 November 2019|url=https://books.google.com/books?id=x4y5DwAAQBAJ&pg=PA286|title=A Brain for Numbers: The Biology of the Number Instinct|publisher=MIT Press|isbn=978-0-262-35432-5|page=286|access-date=30 April 2022}}</ref>
 
Banga Yunani Kuno terlihat bimbang terkait status nol sebagai bilangan. Beberapa mempertanyakan, "Bagaimana yang tidak ada menjadi ada?", yang mengarah pada argumen-argumen filosofis, dan pada periode [[Abad Pertengahan|abad pertengahan]], argumen-argumen religius terkait alam, keberadaan nol, dan [[ruang hampa]]. [[Paradoks|Paradoks-paradoks]] oleh [[Zeno of Elea|Zeno dari Elea]] sebagian besar bergantung pada ketidakjelasan cara mengartikan nol.<ref>{{cite encyclopedia|last=Huggett|first=Nick|title=Zeno's Paradoxes|date=2019|url=https://plato.stanford.edu/archives/win2019/entries/paradox-zeno/|encyclopedia=The Stanford Encyclopedia of Philosophy|editor-last=Zalta|editor-first=Edward N.|edition=Winter 2019|publisher=Metaphysics Research Lab, Stanford University|access-date=2020-08-09|archive-date=10 January 2021|archive-url=https://web.archive.org/web/20210110135804/https://plato.stanford.edu/archives/win2019/entries/paradox-zeno/|url-status=live}}</ref>
[[Berkas:P._Lund,_Inv._35a.jpg|al=Fragment of papyrus with clear Greek script, lower-right corner suggests a tiny zero with a double-headed arrow shape above it|ka|jmpl|300x300px|Contoh dari simbol Yunani untuk nol pada masa awal (sudut kanan bawah) dari selembar papirus abad ke-2.]]
Pada tahun 150, [[Ptolemy]] menggunakan simbol untuk nol ({{overset|—|°}})<ref>{{Cite book|last=Neugebauer|first=Otto|year=1969|url=https://archive.org/details/exactsciencesant00neug|title=The Exact Sciences in Antiquity|publisher=[[Dover Publications]]|isbn=978-0-486-22332-2|edition=2|pages=[https://archive.org/details/exactsciencesant00neug/page/n30 13]–14, plate 2|author-link=Otto E. Neugebauer|url-access=registration|orig-date=1957}}</ref><ref name="Mercier">{{cite web|last=Mercier|first=Raymond|title=Consideration of the Greek symbol 'zero'|url=http://www.raymondm.co.uk/prog/GreekZeroSign.pdf|work=Home of Kairos|archive-url=https://web.archive.org/web/20201105113109/http://www.raymondm.co.uk/prog/GreekZeroSign.pdf|archive-date=5 November 2020|access-date=28 March 2020|url-status=live}}{{sps|date=November 2023}}</ref> dalam karyanya di [[Astronomi teoretis|astronomi matematika]], ''Syntaxis Mathematica'' (juga dikenal sebagai ''[[Almagest]]''). Ia mendapat pengaruh dari [[Hipparkhos]] dan [[Babilonia|bangsa Babilonia]].<ref name="Ptolemy">{{cite book|last=Ptolemy|year=1998|title=Ptolemy's Almagest|title-link=Almagest|publisher=[[Princeton University Press]]|isbn=0-691-00260-6|pages=306–307|translator-last=Toomer|translator-first=G. J.|author-link=Ptolemy|translator-link=Gerald J. Toomer|orig-date=1984, {{circa}}150}}</ref> [[Angka Yunani#Nol|Nol Helenistik]] ini mungkin adalah catatan tertua penggunaan angka untuk mewakili nol di [[Dunia Lama]].<ref>{{cite web|last1=O'Connor|first1=J J|last2=Robertson|first2=E F|title=A history of Zero|url=http://mathshistory.st-andrews.ac.uk/HistTopics/Zero.html|publisher=MacTutor History of Mathematics|archive-url=https://web.archive.org/web/20200407074239/http://mathshistory.st-andrews.ac.uk/HistTopics/Zero.html|archive-date=7 April 2020|access-date=28 March 2020|url-status=live}}</ref> Ptolemy banyak menggunakannya dalam buku ''Almagest''-nya (VI.8), untuk menyatakan [[Magnitudo gerhana|magnitudo]] dari [[gerhana bulan]] dan [[Gerhana matahari|matahari]]. Simbol Ptolemy digunakan sebagai penanda-tempat sekaligus sebagai angka dalam dua fungsi matematika, jadi simbol ini mewakili nol, bukan kosong. Seiring waktu, simbol nol Ptolemy cenderung membesar dan kehilangan garis atas, sehingga terlihat seperti omikron besar "O" panjang mirip-0, atau sebagai omikron dengan garis atas "ō", ketimbang versi aslinya yang berupa titik dengan garis atas.<ref>{{cite web|date=2024-07-31|title=Proposal to encode the Greek Zero in the UCS|url=https://www.unicode.org/L2/L2004/04054-greek-zero.pdf|archive-url=http://web.archive.org/web/20221007235444/https://unicode.org/L2/L2004/04054-greek-zero.pdf|archive-date=2022-10-07|url-status=live}}</ref>
 
Penggunaan nol tertua dalam [[Computus|perhitungan tanggal Paskah]] dilakukan sebelum tahun 311, pada entri pertama dalam tabel [[epak]] yang tersimpan dalam suatu dokumen [[Etiopia]] untuk tahun 311-369. Tabel ini menggunakan kata [[Ge'ez]] untuk "kosong" bersama dengan angka-angka Ge'ez (yang didasarkan pada angka Yunani), dan merupakan terjemahan dari tabel serupa yang diterbitkan oleh [[Gereja Aleksandria]] dalam [[Bahasa Yunani Abad Pertengahan|bahasa Yunani Pertengahan]].<ref name="Neugebauer">{{cite book|last=Neugebauer|first=Otto|year=2016|title=Ethiopic Astronomy and Computus|publisher=Red Sea Press|isbn=978-1-56902-440-9|edition=Red Sea Press|pages=25, 53, 93, 183, Plate I|author-link=Otto Neugebauer|orig-date=1979}}. The pages in this edition have numbers six less than the same pages in the original edition.</ref> Nol ini digunakan kembali tahun 525 dalam tabel serupa, yang diterjemahkan dari kata Latin ''nulla'' ("kosong") oleh [[Dionysius Exiguus]], bersama dengan [[Angka Romawi|angka-angka Romawi]].<ref name="Dionysius">{{cite web|last=Deckers|first=Michael|year=2003|title=Cyclus Decemnovennalis Dionysii|url=http://hbar.phys.msu.ru/gorm/chrono/paschata.htm|trans-title=Nineteen Year Cycle of Dionysius|archive-url=https://web.archive.org/web/20190115083618/http://hbar.phys.msu.ru/gorm/chrono/paschata.htm|archive-date=15 January 2019|orig-date=525}}</ref> Ketika pembagian tidak menghasilkan sisa, kata ''nihil'' (yang berarti tidak ada) digunakan. Nol abad pertengahan ini selanjutnya digunakan oleh para [[Computus|penghitung tanggal Paskah]] abad pertengahan. Awalan "N" digunakan sebagai simbol nol dalam suatu tabel angka Romai oleh [[Bede]] (atau koleganya) sekitar tahun 725.<ref name="zero">C. W. Jones, ed., ''Opera Didascalica'', vol. 123C in ''Corpus Christianorum, Series Latina''.</ref>
 
=== China ===
[[Berkas:Zero_in_Rod_Calculus.png|al=Five illustrated boxes from left to right contain a T-shape, an empty box, three vertical bars, three lower horizontal bars with an inverted wide T-shape above, and another empty box. Numerals underneath left to right are six, zero, three, nine, and zero|ka|jmpl|Ilustrasi nol menggunakan [[tongkat penghitung]] China, didasarkan pada contoh oleh ''A History of Mathematics''. Ruang kosong digunakan untuk mewakili nol.<ref name="Hodgkin">{{Cite book|last=Hodgkin|first=Luke|date=2005|url=https://archive.org/details/historyofmathema0000hodg|title=A History of Mathematics: From Mesopotamia to Modernity|publisher=Oxford University Press|isbn=978-0-19-152383-0|page=[https://archive.org/details/historyofmathema0000hodg/page/85 85]|url-access=registration}}</ref>]]
''[[Sunzi Suanjing]]'', yang diperkirakan berasal dari sekitar abad ke-1 sampai ke-5 Masehi), dan catatan-catatan Jepang dari abad ke-18, menjelaskan cara sistem [[tongkat penghitung]] China abad ke-4&nbsp;SM memungkinkan penghitungan desimal. Seperti yang dicatat dalam ''[[Xiahou Yang Suanjing]]'' (425-468&nbsp;M), untuk mengalikan (atau membagi) sebuah angka dengan 10, 100, 1000, atau 10,000, yang perlu dilakukan dengan tongkat-tongkat di papan hitung, adalah memindahkannya ke depan (atau ke belakang) sebanyak 1, 2, 3, atau 4 tempat.<ref>{{MacTutor|class=HistTopics|id=Chinese_numerals|title=Chinese numerals|date=January 2004}}</ref> Tongkat-tongkat tersebut memberikan [[representasi desimal]] dari sebuah angka, dengan ruang kosong yang mewakili nol.<ref name="Hodgkin3">{{Cite book|last=Hodgkin|first=Luke|date=2005|url=https://archive.org/details/historyofmathema0000hodg|title=A History of Mathematics: From Mesopotamia to Modernity|publisher=Oxford University Press|isbn=978-0-19-152383-0|page=[https://archive.org/details/historyofmathema0000hodg/page/85 85]|url-access=registration}}</ref><ref>{{Cite web|title=Chinese numerals|url=https://mathshistory.st-andrews.ac.uk/HistTopics/Chinese_numerals/|website=Maths History|language=en|access-date=2024-04-28}}</ref> Sistem tongkat penghitung adalah sistem [[notasi posisional]].<ref>{{harvnb|Shen|Crossley|Lun|1999|p=12}}: "the ancient Chinese system is a place notation system"</ref><ref>{{Citation|last=Eberhard-Bréard|first=Andrea|title=Mathematics in China|date=2008|encyclopedia=Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures|pages=1371–1378|editor-last=Selin|editor-first=Helaine|url=https://doi.org/10.1007/978-1-4020-4425-0_9453|access-date=2024-04-28|place=Dordrecht|publisher=Springer Netherlands|language=en|doi=10.1007/978-1-4020-4425-0_9453|isbn=978-1-4020-4425-0}}</ref>
 
Nol tidak dianggap sebagai angka pada masa itu, tapi sebagai "posisi kosong".<ref name="Crossley2">{{Cite book|last1=Shen|first1=Kangshen|last2=Crossley|first2=John N.|last3=Lun|first3=Anthony W.-C.|year=1999|url=https://books.google.com/books?id=eiTJHRGTG6YC|title=The Nine Chapters on the Mathematical Art: Companion and Commentary|publisher=Oxford University Press|isbn=978-0-19-853936-0|page=35|quote=zero was regarded as a number in India ... whereas the Chinese employed a vacant position|author1-mask=Shen Kanshen}}</ref> Karya [[Qin Jiushao]] ''[[Risalah Matematika dalam Sembilan Bab]]'' tahun 1247 adalah teks matematika China tertua yang selamat, yang menggunakan simbol bulat [[Aksara Han Maharani Wu|〇]] untuk nol.<ref name="Qin2">{{Cite web|title=Mathematics in the Near and Far East|url=http://grmath4.phpnet.us/istoria/the_history_of%20math_greece/the_history_of%20math_greece_3-5.pdf|website=grmath4.phpnet.us|page=262|archive-url=https://web.archive.org/web/20131104120005/http://grmath4.phpnet.us/istoria/the_history_of%20math_greece/the_history_of%20math_greece_3-5.pdf|archive-date=4 November 2013|access-date=7 June 2012|url-status=live}}</ref> Asal usul dari simbol ini tidak jelas; mungkin dibawa dari India, atau dihasilkan dengan mengubah simbol persegi.<ref>{{cite book|last=Martzloff|first=Jean-Claude|year=2007|title=A History of Chinese Mathematics|publisher=Springer|isbn=978-3-540-33783-6|page=208|translator-last1=Wilson|translator-first1=Stephen S.}}</ref> Risalah tersebut juga menunjukkan bahwa penulis-penulis China sudah familiar dengan konsep bilangan negatif pada masa [[dinasti Han]] (abad ke-2).<ref name="struik332">Struik, Dirk J. (1987). ''A Concise History of Mathematics''. New York: Dover Publications. pp. 32–33. "''In these matrices we find negative numbers, which appear here for the first time in history.''"</ref>
 
=== India ===
Seorang cendekiawan [[Chanda|sajak Sanskerta]] bernama [[Pingala]] (sekitar abad ke-3 atau ke-2&nbsp;SM),<ref name="plofker">{{Cite book|last=Plofker|first=Kim|year=2009|title=Mathematics in India|title-link=Mathematics in India (book)|publisher=Princeton University Press|isbn=978-0-691-12067-6|pages=[https://books.google.com/books?id=DHvThPNp9yMC&pg=PA54 54–56]|quote=In the Chandah-sutra of Pingala, dating perhaps the third or second century BC, [ ...] Pingala's use of a zero symbol [śūnya] as a marker seems to be the first known explicit reference to zero. ... In the Chandah-sutra of Pingala, dating perhaps the third or second century BC, there are five questions concerning the possible meters for any value "n". [ ...] The answer is (2)<sup>7</sup> = 128, as expected, but instead of seven doublings, the process (explained by the sutra) required only three doublings and two squarings – a handy time saver where "n" is large. Pingala's use of a zero symbol as a marker seems to be the first known explicit reference to zero|author-link=Kim Plofker}}</ref><ref>{{Cite book|author=Vaman Shivaram Apte|year=1970|title=The Student's Sanskrit-English Dictionary|publisher=Motilal Banarsidass|isbn=978-81-208-0045-8|pages=648–649|chapter=Sanskrit Prosody and Important Literary and Geographical Names in the Ancient History of India|access-date=21 April 2017|chapter-url=https://books.google.com/books?id=4ArxvCxV1l4C&pg=PA648}}</ref> menggunakan [[Sistem bilangan biner|barisan biner]] dalam bentuk suku kata pendek dan suku kata panjang (yang setara dengan dua suku kata pendek) untuk menentukan [[metrum]] Sanskerta yang valid; suatu notasi yang mirip dengan [[kode Morse]].<ref>{{Cite web|last=Hall|first=Rachel|date=February 15, 2005|title=Math for Poets and Drummers: The Mathematics of Rhythm|url=http://people.sju.edu/~rhall/Rhythms/Poets/arcadia.pdf|publisher=Saint Joseph's University|type=slideshow|archive-url=https://web.archive.org/web/20190122014628/http://people.sju.edu/~rhall/Rhythms/Poets/arcadia.pdf|archive-date=22 January 2019|access-date=20 December 2015|url-status=dead}}</ref> Pingala menggunakan kata [[Bahasa Sanskerta|Sanskerta]] ''[[Śūnyatā|śūnya]]'' secara eksplisit untuk merujuk nol.<ref name="plofker" />
[[Berkas:Bakhshali_manuscript_zero_detail.jpg|jmpl|Manuskrip Bakhshali, dengan angka "nol" diwakili oleh titik hitam (tahun 224–383)]]
Konsep nol sebagai angka dalam [[Notasi posisional|notasi nilai-tempat]] ''desimal'' dikembangkan di [[India]].<ref name="bourbaki46">{{harvnb|Bourbaki|1998|p=46}}</ref> Simbol nol berupa titik besar digunakan di keseluruhan [[manuskrip Bakhshali]], suatu panduan praktis tentang [[aritmetika]] untuk para pedagang.<ref name="Weiss">{{Cite news|last=Weiss|first=Ittay|date=20 September 2017|title=Nothing matters: How India's invention of zero helped create modern mathematics|url=https://theconversation.com/nothing-matters-how-the-invention-of-zero-helped-create-modern-mathematics-84232|work=The Conversation|archive-url=https://web.archive.org/web/20180712124031/https://theconversation.com/nothing-matters-how-the-invention-of-zero-helped-create-modern-mathematics-84232|archive-date=12 July 2018|access-date=12 July 2018|url-status=live}}</ref> Pada tahun 2017, para peneliti di [[Bodleian Library]] melaporkan hasil [[penanggalan radiokarbon]] untuk tiga sampel dari manuskrip tersebut, dan mengindikasikan bahwa manuskrip tersebut berasal dari tiga abad yang berbeda: dari 224-383 Masehi, 680-779 Masehi, dan 885-993 Masehi. Tidak diketahui alasan fragmen-fragmen kulit [[Burja|kayu burja]] (''birch'') dari abad yang berbeda-beda dapat dikemas bersama untuk membentuk manuskrip tersebut. Jika tulisan pada fragmen-fragmen kulit kayu burja tertua sama tuanya dengan usia kulit kayu tersebut, ini menunjukkan penggunaan tertua yang tercatat dari simbol nol di [[Asia Selatan]]. Jika tulisan pada fragmen kulit kayu burja tertua sama tuanya dengan fragmen-fragmen tersebut, maka ini merupakan penggunaan simbol nol tertua yang tercatat di Asia Selatan. Namun, ada kemungkinan bahwa tulisan tersebut berasal dari periode waktu fragmen termuda, yaitu 885-993 Masehi. Penanggalan yang terakhir ini dianggap lebih konsisten dengan penggunaan nol yang canggih di dalam dokumen tersebut, karena beberapa bagian dari dokumen tersebut tampak menunjukkan bahwa nol digunakan sebagai angka, dan bukan hanya sebagai penanda posisi.<ref name="Devlin 2017">{{Cite news|last=Devlin|first=Hannah|author-link=Hannah Devlin|date=13 September 2017|title=Much ado about nothing: ancient Indian text contains earliest zero symbol|url=https://www.theguardian.com/science/2017/sep/14/much-ado-about-nothing-ancient-indian-text-contains-earliest-zero-symbol|work=The Guardian|issn=0261-3077|archive-url=https://web.archive.org/web/20171120225416/https://www.theguardian.com/science/2017/sep/14/much-ado-about-nothing-ancient-indian-text-contains-earliest-zero-symbol|archive-date=20 November 2017|access-date=14 September 2017|url-status=live}}</ref><ref>{{Cite news|date=14 September 2017|title=Carbon dating finds Bakhshali manuscript contains oldest recorded origins of the symbol 'zero'|url=http://www.bodleian.ox.ac.uk/bodley/news/2017/sep-14|work=Bodleian Library|archive-url=https://web.archive.org/web/20170914215604/http://www.bodleian.ox.ac.uk/bodley/news/2017/sep-14|archive-date=14 September 2017|access-date=25 October 2017|url-status=live}}</ref><ref>{{Cite journal|last1=Plofker|first1=Kim|last2=Keller|first2=Agathe|last3=Hayashi|first3=Takao|author-link3=Takao Hayashi|last4=Montelle|first4=Clemency|author-link4=Clemency Montelle|last5=Wujastyk|first5=Dominik|date=2017-10-06|title=The Bakhshālī Manuscript: A Response to the Bodleian Library's Radiocarbon Dating|url=https://journals.library.ualberta.ca/hssa/index.php/hssa/article/view/22|journal=History of Science in South Asia|language=en|volume=5|issue=1|pages=134–150|doi=10.18732/H2XT07|author-link1=Kim Plofker|doi-access=free}}</ref>
 
Teks [[Jainisme]] tentang [[kosmologi]] ''[[Lokavibhaga|Lokavibhāga]]'' yang ditulis tahun 458&nbsp;M ([[era Saka]] 380) menggunakan sistem nilai-tempat desimal, termasuk nol. Dalam teks ini, ''[[Śūnyatā|śūnya]]'' ("hampa, kosong") juga digunakan untuk merujuk pada nol.{{sfnp|Ifrah|2000|p=416}}
 
Aturan terkait penggunaan nol muncul dalam ''[[Brāhmasphuṭasiddhānta|Brahmasputha Siddhanta]]'' (abad ke-7) karya [[Brahmagupta]], yang menyatakan bahwa penambahan nol dengan dirinya sendiri sama dengan nol, dan secara salah menjelaskan [[pembagian oleh nol]] sebagai berikut:{{sfn|Kaplan|2000|p=[https://archive.org/details/nothingthatisnat00kapl/page/68 68–75]}}<ref name="brahmagupta">{{cite book|date=1817|url=https://archive.org/details/algebrawitharith00brahuoft|title=Algebra, with Arithmetic and Mensuration from the Sanscrit of Brahmegupta and Bháscara|place=London|publisher=John Murray|translator=Henry Thomas Colebrooke|oclc=1039515732}}</ref><blockquote>Sebarang bilangan positif atau negatif ketika dibagi oleh nol menghasilkan suatu pecahan dengan nol sebagai penyebut. Nol dibagi dengan bilangan negatif atau positif menghasilkan antara nol atau dapat dituliskan sebagai pecahan dengan nol sebagai pembilang dan suatu besaran hingga sebagai penyebut. Nol dibagi dengan nol menghasilkan nol.</blockquote>
 
==== Epigrafi ====
{{multiple image
| perrow = 2
| total_width = 330
| align = right
| header = Prasasti Sambor
| image1 = First zero 1.jpg
| caption1 =
| image2 = Khmer Numerals - 605 from the Sambor inscriptions.jpg
| caption2 =
| image3 = 03-National Museum of Cambodia-nX-1.jpg
| caption3 =
| footer = Catatan tertua penggunaan nol sebagai angka desimal ditemukan di prasasti Sambor. Angka "605" yang tertulis dalam [[angka Khmer]] (atas), menunjukkan tanggal prasasti dibuat: [[era Saka|era Saka 605]] (683 Masehi). Fragmen prasasti yang ditulis dalam bahasa [[Khmer Tua]], dulunya adalah bagian dari pintu kuil, dan ditemukan di [[provinsi Kratié]], [[Kamboja]].
}}
Berdasarkan [[epigrafi]], cabang ilmu [[arkeologi]] yang meneliti benda-benda tertulis masa lampau, titik hitam digunakan sebagai penanda-tempat desimal dalam [[manuskrip Bakhshali]], yang sebagiannya tertanggal dari tahun 224–993&nbsp;M.<ref name="Devlin 20173">{{Cite news|last=Devlin|first=Hannah|author-link=Hannah Devlin|date=13 September 2017|title=Much ado about nothing: ancient Indian text contains earliest zero symbol|url=https://www.theguardian.com/science/2017/sep/14/much-ado-about-nothing-ancient-indian-text-contains-earliest-zero-symbol|work=The Guardian|issn=0261-3077|archive-url=https://web.archive.org/web/20171120225416/https://www.theguardian.com/science/2017/sep/14/much-ado-about-nothing-ancient-indian-text-contains-earliest-zero-symbol|archive-date=20 November 2017|access-date=14 September 2017|url-status=live}}</ref> Ada banyak prasasti lempengan tembaga dengan simbol o kecil yang sama, beberapa di antaranya mungkin berasal dari abad ke-6, tetapi tanggal atau keasliannya masih diragukan.{{sfn|Kaplan|2000}}
 
Sebongkah lauh (''inscription'') batu ditemukan di reruntuhan kuil dekat Sambor di [[Mekong]], [[Provinsi Kratié]], [[Kamboja]], memuat tulisan "605" dalam [[angka Khmer]] (seperangkat glif untuk [[sistem bilangan Hindu-Arab]]). Angka tersebut adalah tahun prasasti pada [[era Saka]], yang setara dengan tanggal 683&nbsp;M.<ref>{{cite journal|last=Cœdès|first=George|author-link=George Cœdès|date=1931|title=A propos de l'origine des chiffres arabes|journal=Bulletin of the School of Oriental Studies, University of London|language=fr|publisher=Cambridge University Press|volume=6|pages=323–328|doi=10.1017/S0041977X00092806|jstor=607661|number=2|s2cid=130482979}}</ref><ref>{{cite journal|last=Diller|first=Anthony|date=1996|title=New Zeros and Old Khmer|url=sealang.net/sala/archives/pdf8/diller1996new.pdf|journal=[[Mon-Khmer Studies]]|volume=25|pages=125–132|archive-url=https://web.archive.org/web/20240914140501/sealang.net/sala/archives/pdf8/diller1996new.pdf|archive-date=2024-09-14}}</ref>
 
Penggunaan [[glif]] khusus yang tak-terbantahkan untuk angka-angka desimal meliputi simbol untuk angka nol (berupa lingkaran kecil), muncul dalam lauh batu yang ditemukan di [[Kuil Chaturbhuj]], [[Gwalior]], di India, dengan bertanggal 876 Masehi.{{sfnp|Ifrah|2000|p=400}}<ref>{{Cite web|last=Casselman|first=Bill|author-link=Bill Casselman (mathematician)|title=All for Nought|url=http://www.ams.org/samplings/feature-column/fcarc-india-zero|website=ams.org|publisher=University of British Columbia), American Mathematical Society|archive-url=https://web.archive.org/web/20151206184352/http://www.ams.org/samplings/feature-column/fcarc-india-zero|archive-date=6 December 2015|access-date=20 December 2015|url-status=live}}</ref>
 
=== Abad Pertengahan ===
 
==== Penyebaran ke budaya Islam ====
{{Lihat pula|Sejarah sistem bilangan Hindu-Arab}}
 
Ilmu pengetahuan di lingkungan berbahasa [[Bahasa Arab|Arab]] sebagian besar merupakan warisan dari [[Yunani Kuno|Yunani]],<ref>{{Cite book|last=Pannekoek|first=Anton|year=1961|title=A History of Astronomy|publisher=George Allen & Unwin|isbn=9780045200023|page=165|oclc=840043|author-link=Anton Pannekoek}}</ref> lalu diikuti oleh pengaruh Hindu.<ref name="Durant">{{cite book|last=Durant|first=Will|date=1950|title=The Story of Civilization, Volume 4, The Age of Faith: Constantine to Dante – A.D. 325–1300|publisher=Simon & Schuster|isbn=978-0-9650007-5-8|quote=The Arabic inheritance of science was overwhelmingly Greek, but Hindu influences ranked next. In 773, at Mansur's behest, translations were made of the ''Siddhantas'' – Indian astronomical treatises dating as far back as 425 BC; these versions may have the vehicle through which the "Arabic" numerals and the zero were brought from India into Islam. In 813, al-Khwarizmi used the Hindu numerals in his astronomical tables.|author-link=Will Durant|quote-page=241}}</ref> Pada tahun 773&nbsp;M, atas perintah [[Al-Mansur]], dilakukan penerjemahan terhadap berbagai risalah kuno, termasuk dari bahasa Yunani, Romawi, India, dan lainnya.
 
Pada tahun 813&nbsp;M, seorang ahli matematika [[Suku Persia|Persia]] bernama [[Al-Khawarizmi|Muhammad bin Musa al-Khawarizmi]] membuat tabel astronomi menggunakan angka-angka Hindu;<ref name="Durant" /> dan sekitar tahun 825, ia menerbitkan sebuah buku yang menggabungkan pengetahuan Yunani dan Hindu, serta kontribusinya sendiri dalam matematika termasuk penjelasan tentang penggunaan nol.<ref>{{Cite book|last=Brezina|first=Corona|year=2006|url=https://books.google.com/books?id=955jPgAACAAJ|title=Al-Khwarizmi: The Inventor of Algebra|publisher=The Rosen Publishing Group|isbn=978-1-4042-0513-0|access-date=26 September 2016}}</ref> Buku ini kemudian diterjemahkan ke dalam [[bahasa Latin]] pada abad ke-12 dengan judul ''Algoritmi de numero Indorum''. Judul ini berarti “al-Khawarizmi tentang Bilangan India”. Kata “Algoritmi” adalah [[Latinisasi (bahasa)|Latinisasi]] penerjemah dari nama Al-Khawarizmi, yang perkembangan selanjutnya menyebabkan kata “[[Algoritma]]” atau “[[Algorisma]]” mulai memiliki arti aritmetika apa pun yang didasarkan pada desimal.<ref name="Durant" />
 
[[Muhammad bin Ahmad al-Khawarizmi]] pada tahun 976 menyatakan bahwa jika tidak ada angka yang muncul di tempat puluhan dalam perhitungan, suatu lingkaran kecil harus digunakan “untuk menjaga (bentuk) barisan”. Lingkaran ini disebut ''ṣifr''.<ref>{{harvnb|Durant|1950|p=241}}: "In 976, Muhammad ibn Ahmad, in his ''Keys of the Sciences'', remarked that if, in a calculation, no number appears in the place of tens, a little circle should be used "to keep the rows". This circle the Mosloems called ''ṣifr'', "empty" whence our cipher."</ref>
 
==== Penyebaran ke Eropa ====
[[Sistem bilangan Hindu-Arab]] (basis 10) sampai ke Eropa Barat pada abad ke-11, melalui daerah [[Al-Andalus]], melalui para [[Muslim]] Spanyol dan [[Moor]], dan bersama pengetahuan terkait [[Sejarah astronomi|astronomi klasik]] dan instrumen-instrumen seperti [[astrolabe]]. [[Paus Silvester II|Gerbert d'Aurillac]] dianggap berjasa dalam memperkenalkan kembali ajaran-ajaran yang hilang ke lingkungan Katolik di Eropa. Karena alasan ini, angka-angka tersebut kemudian dikenal di Eropa sebagai “angka Arab”. Matematikawan Italia, [[Leonardo da Pisa|Leonardo dari Pisa]] (juga dikenal sebagai Fibonacci), berperan penting dalam membawa sistem bilangan ini ke dalam matematika Eropa pada tahun 1202.<ref>{{multiref2|{{cite book | translator-last=Sigler|translator-first= Laurence E.| title= Fibonacci's Liber Abaci: A Translation into Modern English of Leonardo Pisano's Book of Calculation |publisher= Springer|date= 2003| isbn =978-1-4613-0079-3 | doi=10.1007/978-1-4613-0079-3 |series= Sources and Studies in the History of Mathematics and Physical Sciences|last1= Sigler|first1= Laurence}}|{{cite periodical| last=Grimm | first= Richard E. | title=The Autobiography of Leonardo Pisano| magazine =[[Fibonacci Quarterly]]| volume= 11 | number=1 |date=February 1973|pages= 99–104 |archive-url=https://web.archive.org/web/20231126180044/https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=318a17253f745e2af400eb2ebb4dc4e762560a5b | archive-date= 26 November 2023 |url-status=live | url = https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=318a17253f745e2af400eb2ebb4dc4e762560a5b}}|{{Cite book |last=Hansen |first=Alice |url=https://books.google.com/books?id=COJsbuUI1h8C&pg=PT31 |title=Primary Mathematics: Extending Knowledge in Practice |date=2008 |publisher=SAGE | doi = 10.4135/9781446276532|isbn=978-0-85725-233-3 |language=en |access-date=7 November 2020 |archive-date=7 March 2021 |archive-url=https://web.archive.org/web/20210307234959/https://books.google.com/books?id=COJsbuUI1h8C&q=%22Therefore%2C+embracing+more+stringently+that+method+of+the+Hindus%2C+and+taking+stricter+pains+in+its+study%2C+while+adding+certain+things+from+my+own+understanding+and+inserting+also+certain+things+from+the+niceties+of+Euclid%27s+geometric+art.%22&pg=PT31 |url-status=live }}}}</ref>
 
Semenjak abad ke-13, panduan-panduan cara berhitung (penjumlahan, perkalian, mengambil akar, dll.) menjadi umum di Eropa dan disebut sebagai algorismus; dari nama matematikawan Persia [[Al-Khawarizmi]]. Salah satu panduan yang populer ditulis oleh [[Johannes de Sacrobosco]] pada awal tahun 1200-an, dan menjadi salah satu buku ilmu pengetahuan pertama yang [[Sejarah percetakan|dicetak]], pada tahun 1488.<ref name="Karpinski1911">{{cite book|last1=Smith|first1=D. E.|last2=Karpinski|first2=L. C.|year=1911|title=The Hindu–Arabic Numerals|publisher=Ginn and Company|pages=134–136|chapter=The spread of the <nowiki>[Hindu–Arabic]</nowiki> numerals in Europe|chapter-url=https://archive.org/stream/hinduarabicnume02karpgoog#page/n145/mode/1up|via=Internet Archive}}</ref><ref>{{cite journal|last1=Pedersen|first1=Olaf|date=1985|title=In Quest of Sacrobosco|journal=Journal for the History of Astronomy|volume=16|issue=3|pages=175–221|bibcode=1985JHA....16..175P|doi=10.1177/002182868501600302|s2cid=118227787}}</ref> Praktik menghitung di kertas menggunakan angka Hindu-Arab baru secara perlahan menggantikan perhitungan menggunakan [[abakus]] dan pencatatan menggunakan [[angka Romawi]].{{sfn|Ifrah|2000|pp=588–590}} Pada abad ke-16, angka Hindu-Arab menjadi angka yang paling umum digunakan di Eropa.<ref name="Karpinski1911" />
 
== Simbol dan representasi ==
[[Berkas:Text_figures_036.svg|al=horizontal guidelines with a zero touching top and bottom, a three dipping below, and a six cresting above the guidelines, from left to right|kiri|71x71px]]
[[Berkas:Oslo_airport_train_station,_Platform_0.jpg|jmpl|Platform 0 di stasiun kereta di bandara Oslo.]]
Saat ini, nol sebagai angka numerik umumnya ditulis dalam bentuk lingkaran atau elips. Secara tradisional, banyak [[Typeface|rupa huruf]] cetak membuat versi huruf kapital [[O]] lebih bundar daripada angka 0 yang lebih elips dan ramping.<ref name="bemer">{{Cite journal|last=Bemer|first=R. W.|year=1967|title=Towards standards for handwritten zero and oh: much ado about nothing (and a letter), or a partial dossier on distinguishing between handwritten zero and oh|journal=Communications of the ACM|volume=10|issue=8|pages=513–518|doi=10.1145/363534.363563|s2cid=294510}}</ref> [[Mesin tik]] pada awalnya tidak membuat perbedaan bentuk antara O dan 0; beberapa model bahkan tidak memiliki tuts untuk angka 0. Pembedaan baru muncul pada masa [[Monitor komputer|monitor]].<ref name="bemer" />
 
Simbol nol dengan garis miring (<math>0\!\!\!{/}</math>) juga umum digunakan untuk membedakan angka dari huruf (contoh umumnya dalam perhitungan, navigasi, dan militer). Angka nol dengan titik di tengah sepertinya muncul sebagai opsi pada tampilan [[IBM 3270]], dan terus berlanjut ke beberapa rupa huruf komputer modern seperti [[Andalé Mono]] dan sistem reservasi penerbangan. Salah satu varian menggunakan garis di atas 0 ketimbang tanda titik.
 
Di beberapa penerapan/sistem, hanya salah satu dari huruf O dan angka 0 (atau malah tidak keduanya) yang boleh digunakan untuk menghindari kerancuan.
 
== Matematika ==
Konsep nol digunakan pada banyak hal dalam matematika: sebagai angka, nol menjadi bagian penting dalam [[Notasi posisional|notasi posisional (nilai-tempat)]] untuk mewakli bilangan, sekaligus memainkan peran sebagai bilangan tersendiri dalam banyak konteks aljabar.
 
=== Sebagai angka ===
{{main|notasi posisional}}
Dalam sistem bilangan posisional (contohnya [[Sistem bilangan desimal#Notasi desimal|notasi desimal]] untuk menyatakan bilangan), angka 0 digunakan sebagai penanda tempat, yang mengartikan perpangkatan dari basis tidak digunakan dalam menyatakan bilangan. Sebagai contoh, bilangan desimal 205 adalah hasil penjumlahan dari dua seratus dan lima satu; angka nol mengartikan tidak ada sepuluh yang ditambahkan. Angka nol juga digunakan dengan tujuan serupa dalam menyatakan [[Sistem bilangan desimal#pecahan|pecahan desimal]] dan representasi desimal dari bilangan-bilangan riil lainnya (menunjukkan apabila persepuluh, perseratus, dst. ada), maupun di basis-basis selain 10 (sebagai contoh, dalam [[Sistem bilangan biner|biner]] menunjukkan perpangkatan-perpangkatan 2 yang tidak digunakan).{{sfn|Reimer|2014|pp=156,199–204}}
 
=== Aljabar dasar ===
[[Berkas:Number_line_with_numbers_-3_to_3.svg|jmpl|300x300px|[[Garis bilangan]] dari -3 sampai 3, dengan 0 terletak di tengah.]]
Bilangan 0 adalah [[Bilangan asli|bilangan bulat taknegatif]] terkecil, sekaligus bilangan bulat takpositif terbesar. [[Bilangan asli]] tepat setelah 0 adalah 1 dan tidak ada bilangan asli sebelum 0. Bilangan 0 dapat dianggap atau tidak dianggap sebagai bilangan asli;{{sfn|Cheng|2017|p=32}}<ref>{{Cite book|last1=Bunt|first1=Lucas Nicolaas Hendrik|last2=Jones|first2=Phillip S.|last3=Bedient|first3=Jack D.|year=1976|url=https://books.google.com/books?id=7xArILpcndYC|title=The historical roots of elementary mathematics|publisher=Courier Dover Publications|isbn=978-0-486-13968-5|pages=254–255|access-date=5 January 2016|archive-url=https://web.archive.org/web/20160623174716/https://books.google.com/books?id=7xArILpcndYC|archive-date=23 June 2016|url-status=live}}, [https://books.google.com/books?id=7xArILpcndYC&pg=PA255 Extract of pp. 254–255] {{Webarchive|url=https://web.archive.org/web/20160510195505/https://books.google.com/books?id=7xArILpcndYC&pg=PA255|date=10 May 2016}}</ref> setidaknya 0 adalah [[bilangan bulat]], sehingga juga merupakan [[bilangan rasional]] dan [[bilangan riil]].{{sfn|Cheng|2017|pp=41, 48–53}} Semua bilangan rasional merupakan [[bilangan aljabar]], termasuk 0. Ketika bilangan-bilangan riil diperluas untuk membentuk [[Bilangan kompleks|bilangan-bilangan kompleks]], 0 menjadi [[Titik nol|titik asal]] dari [[bidang kompleks]].
 
Bilangan nol dapat dianggap bukan positif maupun negatif,<ref>{{Cite web|author=Weisstein, Eric W.|title=Zero|url=http://mathworld.wolfram.com/Zero.html|website=Wolfram|language=en|archive-url=https://web.archive.org/web/20130601190920/http://mathworld.wolfram.com/Zero.html|archive-date=1 June 2013|access-date=4 April 2018|url-status=live}}</ref> atau alternatif lain, sekaligus positif dan negatif;<ref>{{Cite book|last=Weil|first=André|date=2012-12-06|url=https://books.google.com/books?id=NEHaBwAAQBAJ&pg=PA3|title=Number Theory for Beginners|publisher=Springer Science & Business Media|isbn=978-1-4612-9957-8|language=en|author-link=André Weil|access-date=6 April 2021|archive-url=https://web.archive.org/web/20210614182810/https://books.google.com/books?id=NEHaBwAAQBAJ&pg=PA3|archive-date=14 June 2021|url-status=live}}</ref> umumnya 0 digambarkan di tengah [[garis bilangan]]. Nol adalah [[bilangan genap]]<ref>[[Lemma (mathematics)|Lemma]] B.2.2, ''The integer 0 is even and is not odd'', in {{Cite book|last=Penner|first=Robert C.|year=1999|url=https://archive.org/details/discretemathemat0000penn|title=Discrete Mathematics: Proof Techniques and Mathematical Structures|publisher=World Scientific|isbn=978-981-02-4088-2|page=[https://archive.org/details/discretemathemat0000penn/page/34 34]}}</ref> (artinya kelipatan 2), dan juga [[Kelipatan (matematika)|kelipatan]] dari sebarang bilangan bulat, rasional, dan riil lainnya. Nol bukan [[bilangan prima]] maupun [[bilangan komposit]]: bukan prima karena bilangan prima bernilai lebih besar daripada 1 berdasarkan definisinya, dan bukan komposit karena tidak dapat dinyatakan sebagai perkalian dua bilangan asli yang lebih kecil.<ref>{{Cite book|last=Reid|first=Constance|year=1992|title=From zero to infinity: what makes numbers interesting|title-link=From Zero to Infinity|publisher=[[Mathematical Association of America]]|isbn=978-0-88385-505-8|edition=4th|page=23|quote=zero neither prime nor composite}}</ref>
 
Berikut adalah beberapa aturan dasar saat berurusan dengan bilangan 0. Aturan-aturan ini berlaku untuk sebarang bilangan riil maupun kompleks <math>x</math>, kecuali dinyatakan lainnya:
 
* [[Penambahan]]: <math>x+0=0+x=x.</math> Artinya, 0 adalah [[unsur identitas]] terhadap penambahan.
 
* [[Pengurangan]]: <math>x-0=x</math> dan <math>0-x=-x.</math>
* [[Perkalian]]: <math>x\cdot0=0\cdot x = 0.</math>
* [[Pembagian]]: <math>\tfrac{0}{x}=0</math>, untuk <math>x</math> bukan bernilai nol. Namun [[Pembagian oleh nol|{{sfrac|''x''|0}}]] [[Takterdefinisi (matematika)|tidak terdefinisi]] karena 0 tidak memiliki [[invers perkalian]] berdasarkan aturan sebelumnya di atas (tidak ada bilangan yang menghasilkan 1 ketika dikali dengan 0).{{sfn|Cheng|2017|p=47}}
* [[Perpangkatan]]: <math>x^0=\tfrac{x}{x}=1,</math> kecuali [[Nol pangkat nol|kasus ketika ''x'' = 0]] yang dianggap takterdefinisi dalam beberapa konteks. Untuk semua bilangan rill positif <math>x</math>, <math>0^x=0.</math>
 
Ekspresi <math>\tfrac{0}{0}</math>, yang dapat dihasilkan saat mencoba menentukan [[Limit (matematika)|limit]] dari ekspresi berbentuk <math display="inline">\tfrac{f(x)}{g(x) }</math>, dengan menerapkan operator <math>\lim</math> secara terpisah ke kedua fungsi, dikenal sebagai "[[bentuk tak tentu]]." Hal ini tidak mengartikan limit yang dicari tidak terdefinisi; melainkan limit dari <math display="inline">\tfrac{f(x)}{g(x) }</math>, jika ada, harus ditentukan dengan cara-cara lain, contohnya [[aturan L'Hôpital]].<ref>{{Cite book|last1=Herman|first1=Edwin|last2=Strang|first2=Gilbert|date=2017|url=https://openstax.org/details/books/calculus-volume-1|title=Calculus|location=Houston, Texas|publisher=OpenStax|isbn=978-1-938168-02-4|volume=1|pages=454–459|oclc=1022848630|display-authors=etal|author-link2=Gilbert Strang|access-date=26 July 2022|archive-url=https://web.archive.org/web/20220923230919/https://openstax.org/details/books/calculus-volume-1|archive-date=23 September 2022|url-status=live}}</ref>
 
Penjumlahan dari 0 bilangan (''[[jumlah kosong]]'') adalah 0, dan perkalian dari 0 bilangan (''[[perkalian kosong]]'') adalah 1. [[Faktorial]] <math>0!</math> sama dengan 1, sebagai kasus khusus dari perkalian kosong.<ref name="gkp">{{cite book|last1=Graham|first1=Ronald L.|last2=Knuth|first2=Donald E.|last3=Patashnik|first3=Oren|date=1988|title=Concrete Mathematics|title-link=Concrete Mathematics|location=Reading, MA|publisher=Addison-Wesley|isbn=0-201-14236-8|page=111|author1-link=Ronald Graham|author2-link=Donald Knuth|author3-link=Oren Patashnik}}</ref>
 
=== Kegunaan lainnya dalam matematika ===
[[Berkas:Nullset.svg|jmpl|129x129px|Himpunan kosong memiliki nol anggota.]]
Peran bilangan 0 sebagai [[bilangan cacah]] terkecil dapat diperumum maupun diperluas dalam banyak cara.
 
Dalam [[teori himpunan]], 0 adalah [[kardinalitas]] dari [[himpunan kosong]]: jika seseorang tidak memiliki apel, maka dia memiliki 0 apel. Faktanya, dalam beberapa perkembangan matematika aksiomatik dari teori himpunan, 0 ''[[Definisi|didefinisikan]]'' sebagai himpunan kosong.{{sfn|Cheng|2017|p=60}} Jika itu dilakukan, himpunan kosong menjadi [[penetapan kardinal]] von Neumann untuk himpunan tanpa anggota; akibatnya fungsi kardinalitas yang diterapkan pada himpunan kosong selanjutnya menghasilkan himpunan kosong sebagai nilai. Bilangan nol juga menjadi [[bilangan ordinal]] terkecil, selaras dengan pandangan himpunan kosong sebagai [[Urutan rapi|himpunan terurut-rapi]]. Dalam [[Teori urutan|teori tatanan]] (khususnya subcabang [[Kekisi (tatanan)|teori kekisi]]), 0 dapat mewakili [[Elemen terkecil dan terbesar|elemen terkecil]] suatu [[Kekisi (grup)|kekisi]] atau [[himpunan terurut parsial]] lainnya.
Peran 0 sebagai identitas penambahan dapat diperumum di luar aljabar dasar. Dalam [[aljabar abstrak]], 0 umumnya digunakan untuk mewakili [[elemen nol]], yang merupakan [[unsur identitas]] untuk penambahan (jika terdefinisi pada struktur yang bersangkutan) dan [[elemen penyerap]] untuk perkalian (jika terdefinisi). Beberapa contohnya meliputi [[elemen identitas]] dari [[Grup aditif|grup-grup aditif]] dan [[Ruang vektor|ruang-ruang vektor]]. Contoh lainnya adalah fungsi nol (atau peta nol) pada domain <math>D.</math> Ini adalah [[fungsi konstan]] dengan 0 sebagai nilainya; yakni fungsi yang didefinisikan sebagai <math>f(x)=0</math> untuk semua <math>x\in D.</math> Dalam konteks fungsi dari bilangan riil ke bilangan riil, fungsi nol adalah satu-satunya fungsi yang berupa [[fungsi genap]] sekaligus [[Fungsi ganjil dan genap|ganjil]].
 
Bilangan 0 juga digunakan dalam beberapa hal lainnya di banyak cabang matematika, beberapanya meliputi:
 
* [[Akar fungsi|Nilai-nilai nol dari fungsi]] <math>f</math> adalah semua titik <math>x</math> di domain fungsi dengan <math>f(x)=0.</math>
* Dalam [[kalkulus proposisional]], 0 dapat digunakan untuk mewakili [[nilai kebenaran]] salah.
* Dalam [[teori peluang]], 0 adalah nilai terkecil yang mungkin untuk peluang suatu kejadian.{{sfn|Kardar|2007|p=35}}
 
== Sains komputer ==
Komputer modern menyimpan informasi dalam [[Sistem bilangan biner|biner]], yakni sistem penulisan yang terdiri hanya dari dua simbol, umumnya dipilih "0" dan "1". Kode biner cocok digunakan untuk [[elektronika digital]], karena "0" dan "1" dapat diartikan ketiadaan atau keberadaan arus listrik dalam kabel.{{sfn|Woodford|2006|p=9}} [[Pemrogram komputer]] umumnya menggunakan [[Bahasa pemrograman tingkat tinggi|bahasa pemrograman tingkat-tinggi]] yang lebih mudah dipahami manusia ketimbang [[Bahasa mesin|instruksi-instruksi biner]] yang dapat langsung diproses oleh [[Unit Pemroses Sentral]]. Simbol 0 digunakan dalam aspek-aspek penting di bahasa tingkat-tinggi. Sebagai contoh, [[Tipe data boolean|variabel Boolean]] digunakan untuk menyimpan nilai antara ''benar'' atau ''salah'', dan 0 sering dipilih sebagai representasi numerik dari ''salah''.{{sfn|Hill|2020|p=20}}
 
Simbol 0 juga berperan dalam pengindeksan [[Larik (tipe data)|larik]]. Satu praktik umum sepanjang sejarah manusia adalah menghitung dari satu, dan ini diterapkan dalam bahasa pemrograman klasik seperti [[Fortran]] dan [[COBOL]].<ref>{{Cite book|last=Overland|first=Brian|date=2004-09-14|url=https://books.google.com/books?id=bW6MiHxPULUC&dq=cobol+array+index&pg=PT132|title=C++ Without Fear: A Beginner's Guide That Makes You Feel Smart|publisher=Pearson Education|isbn=978-0-7686-8488-9|pages=132|language=en}}</ref> Namun di akhir tahun 1950-an, [[LISP]] memperkenalkan [[penomoran berbasis-nol]] untuk larik, sedangkan [[Algol 58]] memperkenalkan indeks yang fleksibel untuk larik (memungkinkan bilangan positif, nol, dan negatif, untuk indeks dari larik); yang membuat bahasa-bahasa pemrograman masa selanjutnya memilih salah satu dari dua sudut pandang tersebut. {{Citation needed|date=June 2024}}Sebagai contoh, elemen-elemen larik di [[C (bahasa pemrograman)|C]] dinomori dari 0; sehingga untuk larik dengan ''n'' elemen, indeks larik berada di interval nilai 0 sampai ''n-''1.<ref>{{Cite book|last1=Oliveira|first1=Suely|last2=Stewart|first2=David E.|date=2006-09-07|url=https://books.google.com/books?id=E6a8oZOS8noC&dq=C+array+index+zero&pg=PA64|title=Writing Scientific Software: A Guide to Good Style|publisher=Cambridge University Press|isbn=978-1-139-45862-7|pages=64|language=en}}</ref> Kerancuan terkait indeks berbasis-0 dan berbasis-1 dapat terjadi. Sebagai contoh, parameter indeks [[JDBC]] di Java dimulai dari 1, sedangkan [[Java (bahasa pemrograman)|Java]] sendiri menggunakan indeks berbasis-0.<ref>{{Cite web|title=ResultSet (Java Platform SE 8 )|url=https://docs.oracle.com/javase/8/docs/api/java/sql/ResultSet.html|website=docs.oracle.com|archive-url=https://web.archive.org/web/20220509185749/https://docs.oracle.com/javase/8/docs/api/java/sql/ResultSet.html|archive-date=9 May 2022|access-date=2022-05-09|url-status=live}}</ref>
 
Dalam [[Pangkalan data|basis data]], suatu medan (''field'') mungkin tidak memiliki nilai; dan dalam kasus seperti itu disebut memiliki [[nilai null]].<ref>{{Cite book|last1=Wu|first1=X.|last2=Ichikawa|first2=T.|last3=Cercone|first3=N.|date=25 October 1996|url=https://books.google.com/books?id=SdLsCgAAQBAJ&q=%C2%A0In+databases%2C+it+is+possible+for+a+field+not+to+have+a+value+%28null%29&pg=PT197|title=Knowledge-Base Assisted Database Retrieval Systems|publisher=World Scientific|isbn=978-981-4501-75-0|language=en|access-date=7 November 2020|archive-url=https://web.archive.org/web/20220331032618/https://books.google.com/books?id=SdLsCgAAQBAJ&q=%C2%A0In+databases%2C+it+is+possible+for+a+field+not+to+have+a+value+%28null%29&pg=PT197|archive-date=31 March 2022|url-status=live}}</ref> Untuk medan numerik nilai ini bukanlah bilangan 0, dan untuk medan teks bukanlah teks kosong. Keberadaan nilai null menghasilkan [[logika tiga-nilai]]. Dalam logika ini, kondisi juga dapat bernilai ''tak tentu'', selain bernilai ''benar'' atau ''salah''. Semua perhitungan yang menyertakan nilai null menghasilkan nilai null.<ref>{{cite web|author=<!--Not stated-->|date=12 December 2018|title=Null values and the nullable type|url=https://www.ibm.com/docs/en/rbd/9.5.1?topic=parts-null-values-nullable-type|website=IBM|archive-url=https://web.archive.org/web/20211123185142/https://www.ibm.com/docs/en/rbd/9.5.1?topic=parts-null-values-nullable-type|archive-date=23 November 2021|access-date=23 November 2021|quote=In regard to services, sending a null value as an argument in a remote service call means that no data is sent. Because the receiving parameter is nullable, the receiving function creates a new, uninitialized value for the missing data then passes it to the requested service function.|url-status=live}}</ref>
 
Dalam [[Bilangan biner bertanda|representasi bilangan bertanda]] di beberapa perangkat keras komputer, nol memiliki dua representasi berbeda: +0 yang dikelompokkan bersama dengan bilangan-bilangan positif, dan -0 yang dikelompokkan dengan yang negatif. Representasi ini dikenal dengan [[nol bertanda]], dan bentuk kedua sebelumnya terkadang disebut sebagai nol negatif. Representasi ini meliputi representasi biner [[besaran bertanda]], [[komplemen satu]] (tapi tidak bentuk biner [[komplemen dua]] yang digunakan di sebagian besar komputer modern), dan sebagian besar representasi bilangan [[Aritmetika titik kambang|titik kambang]] (seperti format titik kambang [[IEEE floating point|IEEE 754]] dan [[IBM hexadecimal floating-point|IBM S/390]]).{{citation needed|date=December 2023}}
 
Dalam istilah komputasi, [[Kurun (komputasi)|kurun]] adalah tanggal dan waktu yang diasosiasikan dengan stempel waktu (''timestamp'') nol. [[Waktu Unix|Kurun Unix]] dimulai pada tengah malam sebelum 1 Januari 1970.<ref>Paul DuBois. [https://books.google.com/books?id=lFsaBAAAQBAJ "MySQL Cookbook: Solutions for Database Developers and Administrators"] {{Webarchive|url=https://web.archive.org/web/20170224134429/https://books.google.com/books?id=lFsaBAAAQBAJ|date=24 February 2017}} 2014. p. 204.</ref><ref>Arnold Robbins; Nelson Beebe. [https://books.google.com/books?id=J9WbAgAAQBAJ "Classic Shell Scripting"] {{Webarchive|url=https://web.archive.org/web/20170224134147/https://books.google.com/books?id=J9WbAgAAQBAJ|date=24 February 2017}}. 2005. p. 274</ref><ref>Iztok Fajfar. [https://books.google.com/books?id=eHq9CgAAQBAJ "Start Programming Using HTML, CSS, and JavaScript"] {{Webarchive|url=https://web.archive.org/web/20170224134155/https://books.google.com/books?id=eHq9CgAAQBAJ|date=24 February 2017}}. 2015. p. 160.</ref> Kurun [[Classic Mac OS|Mac OS Klasik]] dan kurun [[Palm OS]] dimulai pada tengah malam sebelum 1 Januari 1904.<ref>Darren R. Hayes. [https://books.google.com/books?id=0qPfBQAAQBAJ "A Practical Guide to Computer Forensics Investigations"] {{Webarchive|url=https://web.archive.org/web/20170224134341/https://books.google.com/books?id=0qPfBQAAQBAJ|date=24 February 2017}}. 2014. p. 399</ref>
 
Di C, suatu [[bita]] yang mengandung nilai 0 digunakan untuk menandakan akhir dari karakter [[untaian]]. Simbol 0 juga digunakan sebagai cara standar untuk merujuk [[Null pointer|''null'' ''pointer'']] di kode.<ref>{{cite book|last=Reese|first=Richard M.|year=2013|url=https://books.google.com/books?id=-U155tRMLJgC&dq=C%20%22null%20pointer%22%200&pg=PT26|title=Understanding and Using C Pointers: Core Techniques for Memory Management|publisher=O'Reilly Media|isbn=978-1-449-34455-9}}</ref> Banyak [[Application programming interface|API]] dan [[sistem operasi]] mengharuskan aplikasi menghasilkan nilai bilangan sebagai [[nilai keluar]], umumnya nol untuk menandakan sukses dan tak-nol untuk menandakan suatu [[galat]] spesifik atau pesan peringatan.<ref>{{cite book|author=Marc J. Rochkind|year=1985|url=|title=Advanced UNIX Programming|location=Englewood Cliffs, NJ|publisher=Prentice Hall|isbn=0-13-011818-4|series=Prentice-Hall Software Series|volume=}} Here: Sect.5.5 "Exit system call", p.114.</ref>{{citation needed|date=December 2023|reason=Give citations about a couple of other APIs / OSs.}}
 
== Pranala luar ==
* [http://www-history.mcs.st-and.ac.uk/HistTopics/Zero.html History of Zero]
{{Commonscat|0 (number)}}
 
== Daftar pustaka ==
{{Refbegin}}
* {{Cite book|last=Aczel|first=Amir D.|year=2015|url=https://archive.org/details/findingzeromathe0000acze|title=Finding Zero|location=New York|publisher=Palgrave Macmillan|isbn=978-1-137-27984-2|author-link=Amir D. Aczel}}
* {{Cite book|last=Asimov|first=Isaac|year=1978|url=https://archive.org/details/asimovonnumbers00isaa|title=Asimov on Numbers|location=New York|publisher=Pocket Books|isbn=978-0-671-82134-0|chapter=Nothing Counts|oclc=1105483009|author-link=Isaac Asimov}}
* {{Cite book|last=Barrow|first=John D.|year=2001|url=https://archive.org/details/bookofnothing0000barr|title=The Book of Nothing|publisher=Vintage|isbn=0-09-928845-1|author-link=John D. Barrow}}
* {{Cite book|last=Cheng|first=Eugenia|year=2017|title=Beyond Infinity: An Expedition to the Outer Limits of Mathematics|publisher=Basic Books|isbn=978-1-5416-4413-7|author-link=Eugenia Cheng}}
* {{cite book|last=Kardar|first=Mehran|year=2007|title=Statistical Physics of Particles|title-link=Statistical Physics of Particles|publisher=Cambridge University Press|isbn=978-0-521-87342-0|author-link=Mehran Kardar}}
* {{cite book|last=Reimer|first=David|year=2014|title=Count Like an Egyptian|publisher=Princeton University Press|isbn=978-0-691-16012-2}}
* {{Cite book|last=Woodford|first=Chris|date=2006|url=https://books.google.com/books?id=My7Zr0aP2L8C&pg=PA9|title=Digital Technology|publisher=Evans Brothers|isbn=978-0-237-52725-9|author-link=Chris Woodford (author)|access-date=24 March 2016|archive-url=https://web.archive.org/web/20190817150242/https://books.google.com/books?id=My7Zr0aP2L8C&pg=PA9|archive-date=17 August 2019|url-status=live}}
* {{Cite book|last=Hill|first=Christian|year=2020|title=Learning Scientific Programming with Python|publisher=Cambridge University Press|isbn=978-1-10707541-2|edition=2nd}}
{{Refend}}
 
=== Penelitian terkait sejarah ===
{{Refbegin}}
* {{Cite book|last=Bourbaki|first=Nicolas|year=1998|title=Elements of the History of Mathematics|location=Berlin, Heidelberg, and New York|publisher=Springer-Verlag|isbn=3-540-64767-8|author-link=Nicolas Bourbaki}}
* {{Cite book|last=Diehl|first=Richard A.|year=2004|title=The Olmecs: America's First Civilization|location=London|publisher=Thames & Hudson|isbn=978-0-500-28503-9}}
* {{Cite book|last=Ifrah|first=Georges|year=2000|title=The Universal History of Numbers: From Prehistory to the Invention of the Computer|publisher=Wiley|isbn=0-471-39340-1}}
* {{Cite book|last=Kaplan|first=Robert|year=2000|title=The Nothing That Is: A Natural History of Zero|publisher=Oxford University Press|isbn=978-0-198-02945-8}}
* {{Cite book|last=Seife|first=Charles|year=2000|title=Zero: The Biography of a Dangerous Idea|publisher=Penguin USA|isbn=0-14-029647-6|author-link=Charles Seife}}
{{Refend}}
 
== Catatan kaki ==
[[Kategori:0 (angka)| ]]
[[Kategori:Angka]]
[[Kategori:Bilangan bulat]]
[[Kategori:Nol]]
<references group="lower-alpha" />
 
== Referensi ==
<references responsive="" />
{{Commonscat|0 (number)}}