Persegi panjang: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Membatalkan 1 suntingan by 202.80.218.115 (bicara) (TW)
Tag: Pembatalan Suntingan perangkat seluler Suntingan peramban seluler Suntingan seluler lanjutan
HsfBot (bicara | kontrib)
k v2.05b - Perbaikan untuk PW:CW (Pranala sama dengan teksnya)
 
(2 revisi perantara oleh satu pengguna lainnya tidak ditampilkan)
Baris 1:
{{Short description|Poligon dengan empat sudut siku-siku}}
{{Infobox polygon
| name = Persegi panjang
| image = [[Berkas:Persegi_panjangRectangle_Geometry_Vector.JPG|jmpl]]svg
| caption = Persegi panjang
| type = [[Segipoligon]], empat[[Trapesium_(geometri)|trapesium]], [[Jajarjajar genjang]]
| euler = -
| edges = 4
| symmetry = [[Grup dihedral|Dihedral]] (D<sub>2</sub>), [2], (*22), ''order'' 4
| schläfli = {&nbsp;} × {&nbsp;}
| wythoff =
| coxeter = {{CDD|node_1|2|node_1}}
| area =
| symmetry = [[Dihedral symmetry|Dihedral]] (D<sub>2</sub>), [2], (*22), order 4
| areadual = [[belah ketupat]]
| properties = [[Poligon cembung|konveks]], [[Aksi grup|isogonal]], [[Poligon siklik|siklik]]<br>Sudut dan sisi yang saling berhadapan bersifat saling kongruen
| angle = 90°
| dual = [[Belah ketupat]]
| properties = cembung , isogonal , siklik Opposite sudut dan sisi kongruen
}}
 
Dalam [[geometri Euklides]], '''Persegipersegi panjang''' ({{lang-en|rectangle}}) adalah bangun[[poligon]] datardengan empat [[sudut siku-siku]]. Bangun datar dua dimensi ini juga dapat didefinisikan sebagai [[jajar genjang]] yang memiliki sudut siku-siku; atau secara mendetail sebagai bangun datar yang dibentuk oleh dua pasang [[Sisi (geometri)|sisi]] yangdengan masing-masingmasingnya samamemiliki panjang danyang sama, terletak [[sejajar]] dengan masing-masing pasangannya, dan memiliki empat buahsaling [[suduttegak lurus]] dengan pasangan yang kesemuanyalain adalahsehingga membentuk empat [[sudut yang semuanya siku-siku]].
 
Persegi panjang dengan titik-titik sudut ''ABCD'' dinotasikan sebagai [[Berkas:Rectanglen.PNG|10x10px]]&nbsp;''ABCD''. Lebih lanjut, sisi (rusuk) terpanjang dari bangun ini disebut dengan ''panjang'', sedangkan sisi yang lebih pendek disebut dengan ''lebar''. Persegi panjang dengan empat sisi memiliki panjang yang sama disebut dengan ''[[persegi]]''.
Persegi panjang merupakan turunan dari [[segi empat]] yang mempunyai ciri khusus dua sisi sejajar sama panjang dan keempat sudutnya siku-siku (90°).
 
Persegi panjang banyak terlibat dalam masalah [[teselasi]] (pengubinan), seperti pengubinan bidang oleh persegi-persegi panjang, atau pengubinan persegi panjang oleh poligon-poligon.
Rusuk terpanjang disebut sebagai '''panjang <math>(p)</math>''' dan rusuk terpendek disebut sebagai '''lebar <math>(l)</math>'''.
 
==Definisi==
== Rumus persegi panjang ==
Sebangun [[Poligon cembung|poligon konveks]] disebut persegi panjang [[jika dan hanya jika]] bangun tersebut merupakan salah satu dari beberapa bentuk berikut:<ref>Zalman Usiskin and Jennifer Griffin, "The Classification of Quadrilaterals. A Study of Definition", Information Age Publishing, 2008, pp. 34–36 {{isbn|1-59311-695-0}}.
</ref><ref>{{cite book |author1=Owen Byer |author2=Felix Lazebnik |author3=Deirdre L. Smeltzer|author3-link=Deirdre Smeltzer |title=Methods for Euclidean Geometry |url=https://books.google.com/books?id=W4acIu4qZvoC&pg=PA53 |access-date=2011-11-13 |date=19 August 2010 |publisher=MAA |isbn=978-0-88385-763-2 |pages=53–}}</ref>
* [[jajar genjang]] dengan setidaknya satu [[sudut siku-siku]],
* jajar genjang dengan kedua panjang [[Diagonal|diagonalnya]] sama besar,
* jajar genjang <math>ABCD</math> dengan segitiga <math>ABD</math> dan <math>DCA</math> saling kongruen,
* poligon dengan empat sudut yang semuanya siku-siku,
* poligon dengan kedua diagonalnya saling berpotongan dan memiliki panjang yang sama,<ref>Gerard Venema, "Exploring Advanced Euclidean Geometry with GeoGebra", MAA, 2013, p. 56.</ref>
* poligon konveks dengan sisi-sisi berurutan <math>a,</math> <math>b,</math> <math>c,</math> dan <math>d,</math> dan luas <math>\tfrac{1}{4}(a+c)(b+d)</math>.<ref name=Josefsson/>{{rp|fn.1}}
* poligon konveks dengan sisi-sisi berurutan <math>a,</math> <math>b,</math> <math>c,</math> dan <math>d,</math> dan luas <math>\tfrac{1}{2} \sqrt{(a^2+c^2)(b^2+d^2)}.</math><ref name=Josefsson>{{cite journal | author = Josefsson Martin | year = 2013 | title = Five Proofs of an Area Characterization of Rectangles | url = http://forumgeom.fau.edu/FG2013volume13/FG201304.pdf | journal = Forum Geometricorum | volume = 13 | pages = 17–21 }}</ref>
 
===Penggolongan [[Keliling]] tradisional===
[[Berkas:Symmetries_of_square.svg|jmpl|Persegi panjang adalah kasus khusus dari [[jajar genjang]] dan [[Trapesium (geometri)|trapesium]]. Persegi adalah kasus khusu dari persegi panjang.]]
:<math>K = 2\cdot (p + l)</math>
Persegi panjang adalah kasus khusus dari bangun jajar genjang, yang setiap pasangan sisi bersebelahannya saling [[tegak lurus]]. Jajar genjang selanjutnya adalah kasus khusus dari [[Trapesium (geometri)|trapesium]], yang sisi-sisi saling berhadapannya sejajar dan memiliki panjang yang sama. Trapesium adalah [[Poligon cembung|poligon konveks]] yang memiliki setidaknya sepasang sisi yang saling berhadapan. Poligon konveks adalah poligon yang:
* [[Poligon sederhana|Sederhana]]: tidak ada sisi yang berpotongan dengan sisi(-sisi) lain dari poligon.
* Berbentuk bintang (''star-shaped''): Ada titik di dalam poligon yang dapat 'melihat' semua sisi poligon (tidak tertutup oleh suatu bagian dari poligon tersebut).
 
=== [[Luas]] =Sifat==
:<math>L = p\cdot l</math>
 
=== Panjang [[diagonal]] Simetri===
:<math>d = \sqrt{p^2 + l^2}</math>
 
Persegi panjang memiliki dua garis [[simetri lipat]] dan dua garis [[simetri putar]] 180°. Persegi panjang bersifat [[Poligon siklik|siklik]]; artinya semua titik sudut bangun ini terletak pada suatu [[lingkaran]].<ref>Dengan kata lain, dapat dibuat suatu lingkaran yang melewati semua titik sudut persegi panjang.</ref> Lebih lanjut, persegi panjang juga bersifat sama-sudut (''equiangular''), dengan semua sudutnya berukuran 90 derajat. Bangun ini bersifat [[isogonal]] (''vertex-transitive''): semua sudut berada di [[Tindakan grup (matematika)|orbit simetri]] yang sama.
=== [[Jari-jari]] ===
:<math>r = \frac{1}{2} \cdot \sqrt{p^2 + l^2} </math>
 
===Dualitas persegi panjang dan belah ketupat===
=== Sudut interior ===
:<math>\alpha = \beta = \gamma = \delta = 90^\circ</math>
 
[[Poligon dual]] dari persegi panjang adalah [[belah ketupat]], sebagaimana terlihat pada tabel berikut.<ref>de Villiers, Michael, "Generalizing Van Aubel Using Duality", ''Mathematics Magazine'' 73 (4), Oct. 2000, pp. 303–307.</ref>
=== Persegi panjang emas ===
 
:<math> \frac{a+b}{a} = \frac{a}{b} \equiv \varphi,</math>
{|class="wikitable" style="text-align:center"
|-
!Persegi panjang !! Belah ketupat
|-
|Semua ''sudut'' sama besarnya.
||Semua ''sisi'' sama besarnya.
|-
|''Sisi'' yang saling berhadapan sama besarnya.
||''Sudut'' yang saling berhadapan sama besarnya.
|-
|Titik pusatnya berjarak sama dari semua titik sudutnya, sehingga memiliki ''[[lingkaran luar]]''.
||Titik pusatnya berjarak sama dari semua sisinya, sehingga memiliki ''lingkaran dalam''.
|-
|Kedua garis simetri memotong dua ''sisi'' yang saling berhadapan.
||Kedua garis simetri memotong dua ''sudut'' yang saling berhadapan.
|-
|Perpotongan kedua diagonal sama besar dalam ''panjang''nya.
||Perpotongan kedua diagonal sama besar dalam ''sudut''nya.
|}
===Lain-lain===
Dua persegi panjang, dengan yang satu tidak bisa diletakkan di dalam yang lainnya, dikatakan tidak dapat dibandingkan.
 
==Rumus==
[[File:Illustration for the area of a rectangle.svg|thumb|150px|Luas persegi panjang adalah hasil kali dari panjang dan lebarnya.]]
 
Jika persegi panjang memiliki length <math>p</math> dan lebar <math>l</math>, maka:<ref>{{Cite web |title=Rectangle |url=https://www.mathsisfun.com/geometry/rectangle.html |access-date=2024-03-22 |website=Math Is Fun}}</ref>
* [[Luas|luasnya]] adalah <math>L = p\cdot l</math> ;
* [[Keliling|kelilingnya]] adalah <math>K = 2\cdot (p + l)</math> ;
* masing-masing [[diagonal]] memiliki panjang <math display="inline">d = \sqrt{p^2 + l^2}</math> ;
* dan jika <math>p = l\,</math>, persegi panjang tersebut adalah sebangun [[persegi]].
 
== Teorema ==
[[Berkas:British_flag_theorem_equal_areas.svg|jmpl|Berdasarkan teorema bendera Inggris, persegi-persegi berwarna merah memiliki total luas yang sama dengan persegi-persegi berwarna biru.]]
[[Teorema isoperimetrik]] untuk persegi panjang menyatakan bahwa di antara semua persegi panjang dengan keliling yang sama, persegi (yakni persegi panjang dengan semua panjang sisinya sama) memiliki [[luas]] terbesar.
 
[[Teorema bendera Inggris]] menyatakan bahwa untuk bangun persegi panjang dengan sudut ''A'', ''B'', ''C'', dan ''D'', dan sebarang titik ''P'' di dalam bangun tersebut, berlaku hubungan:<ref>{{cite journal|author1=Hall, Leon M.|author2=Robert P. Roe|year=1998|title=An Unexpected Maximum in a Family of Rectangles|url=http://web.mst.edu/~lmhall/Personal/HallRoe/Hall_Roe.pdf|journal=Mathematics Magazine|volume=71|issue=4|pages=285–291|doi=10.1080/0025570X.1998.11996653|jstor=2690700|name-list-style=amp}}</ref><math display="block">\displaystyle (AP)^2 + (CP)^2 = (BP)^2 + (DP)^2.</math>
 
== Persegi panjang lainnya ==
[[Berkas:Saddle_rectangle_example.png|jmpl|''Persegi panjang pelana'' memiliki 4 sudut nonplanar, yang diambil secara berseling dari sudut-sudut [[balok]]. Bangun ini memiliki [[Permukaan minimum|permukaan minimal]] unik yang didefinisikan sebagai kombinasi linear dari keempat titik sudut, menghasilkan permukaan pelana. Gambar pada contoh ini memperlihatkan keempat sisi persegi panjang, dan dua diagonal berwarna hijau.]]
Dalam [[geometri bola]], ''persegi panjang sferis'' adalah bangun yang dibentuk dari empat busur [[lingkaran besar]] yang berpotongan dengan besar sudut yang sama. Busur-busur yang saling berhadapan memiliki panjang yang sama, dan semua sudut perpotongan lebih besar dari 90°. Dari sudut pandang [[geometri eliptik]], permukaan bola di geometri Euklides merupakan suatu permukaan non-Euklides. Geometri bola adalah bentuk geometri eliptik yang paling sederhana.
 
Dalam geometri eliptik, ''persegi panjang eliptik'' adalah bangun pada permukaan eliptik yang keempat sisinya adalah busur eliptik da n berpotongan pada suatu sudut yang lebih besar dari 90°. Busur-busur yang saling berhadapan memiliki panjang yang sama.
 
Dalam [[geometri hiperbolik]], ''persegi panjang hiperbolik'' adalah bangun pada permukaan hiperbolik yang keempat sisinya adalah busur hiperbolik dan berpotongan pada suatu sudut yang lebih kecil dari 90°. Busur-busur yang saling berhadapan memiliki panjang yang sama.
 
== Pengubinan ==
Persegi panjang digunakan dalam banyak pola [[teselasi]] periodik; beberapa contohnya dalam penyusunan bata sebagai berikut:
{| class="wikitable"
|[[Berkas:Stacked_bond.png|182x182px]]
|[[Berkas:Wallpaper_group-cmm-1.jpg|150x150px]]
|[[Berkas:Wallpaper_group-p4g-1.jpg|150x150px]]
|[[Berkas:Herringbone_bond.svg|150x150px]]
|}
 
== Unicode ==
Kode-kode [[Unicode]] berikut menyatakan persegi panjang:
 
* U+25AC ▬ BLACK RECTANGLE
* U+25AD ▭ WHITE RECTANGLE
* U+25AE ▮ BLACK VERTICAL RECTANGLE
* U+25AF ▯ WHITE VERTICAL RECTANGLE
 
== Lihat juga ==
Baris 46 ⟶ 114:
• [[Persegi]]
 
== Referensi ==
{{bangun}}
<references />{{bangun}}
{{Authority control}}