Struktur abstrak: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
k yg > yang |
Hapus pranala ke "Umum": Menghapus pranala balik ke halaman yang dihapus Umum. (TW) |
||
(9 revisi perantara oleh 8 pengguna tidak ditampilkan) | |||
Baris 1:
'''Struktur abstrak''' adalah suatu kumpulan [[entitas]] tak terdefinisi (Inggris: ''undefined terms'') yang didefinisikan secara umum (atau secara [[universal]]) melalui berbagai [[aksioma]] atau [[postulat]]. Contoh-contoh struktur abstrak adalah konsep [[group]], [[gelanggang]] (Inggris: ''ring''), [[ruang vektor]] (atau [[ruang linear]]), konsep garis, konsep titik, dan sebagainya.
Bahkan sebuah [[bilangan asli]] pun sebenarnya adalah sebuah konsep abstrak walaupun biasanya diasumsikan bahwa setiap orang secara [[intuitif]] 'sudah tahu' dan sudah 'cukup mengenal' bilangan asli sehingga tak perlu lagi diajar, diberitahu atau
Salah satu cara memperkenalkan konsep himpunan semua bilangan asli sebagai sebuah struktur abstrak adalah melalui [[aksioma Peano]] (sebagai ilustrasi, lihat [http://planetmath.org/encyclopedia/PeanoArithmetic.html]
== Konsep abstrak 'bidang datar' ==
Sekitar tahun 325–265 sebelum [[Masehi]], [[Euklid]] dari [[Elexandria]] dalam ''Elements'' sudah mendefinisikan konsep abstrak 'bidang datar' melalui lima aksioma (ditulis sedekat mungkin dengan konsep aslinya) sebagai berikut:
# Dua titik sembarang selalu berada dalam sebuah garis lurus.
# Setiap [[ruas garis lurus]] dapat diperpanjang sampai tak hingga menjadi [[garis lurus]] penuh.
# Diberikan sebuah ruas garis lurus, maka ada sebuah lingkaran yang salah satu jari-jarinya adalah ruas garis tersebut dan yang pusat lingkarannya adalah salah satu dari kedua ujung ruas garis tersebut.
# Semua sudut tegak lurus sama besarnya (sekarang kita sepakat untuk menyatakan besar sudut yang disebut 'sudut tegak' ini dalam ukuran yang seragam: 90 derajat. Penyunting)
# (Postulat kesejajaran). Jika dua ruas garis memotong garis ketiga sedemikian rupa sehingga jumlah kedua sudut dalam dari satu pihak yang terbentuk kurang dari jumlah dua sudut tegak (maksudnya kurang dari 90 + 90 = 180 derajat. Penyunting), maka kedua ruas garis tersebut pasti akan berpotongan, asalkan kedua ruas garis tersebut cukup panjang.
== Ruang vektor ==
[[Ruang vektor]] juga merupakan sebuah konsep abstrak. Kebanyakan mahasiswa dan siswa hanya mengenal konsep vektor dalam ruang real Euklid berdimensi 3, yaitu kumpulan semua bentuk (''x,y,z'') dg ''x, y'' dan ''z'' adalah bilangan-bilangan real. Padahal bilangan real sendiri bisa juga disebut sebagai sebuah vektor.
Contoh [[ruang vektor]] yang agak asing adalah [[himpunan kuasa]] ''P''('''H''') yg berunsurkan semua [[himpunan bagian]] dari suatu [[himpunan]] '''H''' sedangkan '''H''' sendiri adalah suatu himpunan yang tak kosong, yang berukuran ''m'' (jadi '''H''' adalah himpunan [[hingga]]) dan dilengkapi dengan operator [[selisih simetri]] (Inggris: ''symmetric difference'').
[[Ruang vektor]] dalam paragraf di atas ekuivalen dengan kode '''Reed-Muller'''
''R(m,m''), salah satu kode dalam ''coding theory'' yg sudah lama dipelajari dan diselidiki. Kode ''R(m,m)'' berisi semua vektor-vektor biner (''binary vectors'') yg terdiri atas ''n'' = 2^''m'' [[bit]] (singkatan dari ''binary digits'').
== Kode Reed-Muller ==
Antara tahun 1969 dan 1977, bentuk kode Reed-Muller yang lain, terutama kode
''R''(1,3), digunakan oleh pesawat ruang angkasa Mariner untuk mengirim data ke bumi (http://www.ams.org/featurecolumn/ archive/errors6.html). Konsep kode Reed-Muller sangat erat berkaitan dengan konsep [[Geometri Euklid]] berdimensi ''m'' yang ekuivalen dengan konsep [[Geometri Projektif]] berdimensi ''m''.
== Sifat umum atau universal ==
Struktur abstrak dikatakan bersifat
Sebaliknya, struktur abstrak yang sangat umum
Jadi, [[ruang hasil kali dalam]] adalah sebuah struktur abstrak yang lebih spesifik daripada konsep umum ruang vektor yang lebih luas jangkauannya. Walaupun demikian, konsep [[ruang vektor]] bukanlah konsep yang tak bisa diperluas lagi. Sesungguhnya, struktur [[group]] adalah sebuah struktur yang lebih luas daripada konsep [[ruang vektor]].
Di jurusan matematika banyak perguruan tinggi, [[group]], [[gelanggang]], [[ruang vektor]], dan sejenisnya, biasa dipelajari dalam mata kuliah ''struktur-struktur aljabar'' atau dalam [[aljabar abstrak]].
{{Authority control}}
[[Kategori:Matematika]]
|