Aritmetika: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
'Mengembangkan' bagian pembuka dengan terjemahan dari Wikipedia bahasa Inggris Tag: VisualEditor Suntingan perangkat seluler Suntingan peramban seluler Suntingan seluler lanjutan |
Sunarwan29 (bicara | kontrib) Fitur saranan suntingan: 3 pranala ditambahkan. |
||
Baris 15:
Perkembangan historis yang berkelanjutan dari aritmatika modern dimulai dengan [[peradaban Helenistik]] dari Yunani kuno, meskipun berasal lebih lama dari contoh Babilonia dan Mesir. Sebelum karya [[Euklides]] sekitar 300 SM, [[matematika Yunani|studi Yunani dalam matematika]] tumpang tindih dengan keyakinan filosofis dan mistik. Misalnya, [[Nicomachus]] meringkas sudut pandang dari pendekatan [[Pythagoras]] sebelumnya terhadap angka, dan hubungannya satu sama lain, dalam ''[[Pengantar Aritmetika]]''.
[[Angka Yunani]] digunakan oleh [[Archimedes]], [[Diophantus]] dan lainnya dalam [[notasi posisi]] yang tidak jauh berbeda dari notasi modern. Orang Yunani kuno tidak memiliki simbol nol sampai periode Helenistik, dan mereka menggunakan tiga set simbol terpisah sebagai [[digit numerik|digit]]: satu set untuk tempat satuan, satu untuk tempat puluhan, dan satu untuk ratusan. Untuk tempat ribuan, mereka akan menggunakan kembali simbol untuk tempat satuan, dan seterusnya. Algoritma penjumlahan mereka identik dengan metode modern, dan algoritma perkaliannya hanya sedikit berbeda. [[Algoritma|Algoritme]] pembagian panjangnya sama, dan [[Metode penghitungan akar kuadrat#Penghitungan digit demi digit|algoritme akar kuadrat digit demi digit]], populer digunakan baru-baru ini pada abad ke-20, dikenal oleh Archimedes (yang mungkin telah menemukannya). Dia lebih memilihnya daripada [[Metode Heron]] dari perkiraan berturut-turut karena, setelah dihitung, sebuah digit tidak berubah, dan akar kuadrat dari kuadrat sempurna, seperti 7485692. Untuk bilangan dengan bagian pecahan, seperti 546,934, mereka menggunakan pangkat negatif 60 bukan pangkat negatif 10 untuk bagian pecahan 0,934.<ref>''Karya Archimedes'', Bab IV, ''Aritmatika di Archimedes'', diedit oleh T.L. Heath, Dover Publications Inc, New York, 2002.</ref>
Orang Cina kuno memiliki studi aritmatika lanjutan yang berasal dari Dinasti Shang dan berlanjut hingga [[Dinasti Tang]], dari angka dasar hingga aljabar lanjutan. The orang Cina kuno menggunakan notasi posisi yang mirip dengan orang Yunani. Karena mereka juga kekurangan simbol untuk [[nol]], mereka memiliki satu set simbol untuk tempat satuan, dan set kedua untuk puluhan. Untuk tempat ratusan, mereka kemudian menggunakan kembali simbol untuk tempat satuan, dan seterusnya. Simbol mereka didasarkan pada [[batang penghitung]] kuno. Waktu pasti di mana orang Tionghoa mulai menghitung dengan representasi posisi tidak diketahui, meskipun diketahui bahwa adopsi dimulai sebelum 400 SM.<ref>Joseph Needham, ''Sains dan Peradaban di Cina'', Vol. 3, p. 9, Cambridge University Press, 1959.</ref> Orang Cina kuno adalah orang pertama yang menemukan, memahami, dan menerapkan angka negatif secara bermakna. Ini dijelaskan di ''[[Sembilan Bab tentang Seni Matematika]]'' (''Jiuzhang Suanshu''), yang ditulis oleh [[Liu Hui]] berasal dari abad ke-2 SM.
Perkembangan bertahap dari [[sistem angka Hindu-Arab]] secara independen menciptakan konsep nilai tempat dan notasi posisi, yang menggabungkan metode sederhana untuk komputasi dengan basis desimal, dan penggunaan digit yang mewakili [[0 (angka)|0]]. Hal ini memungkinkan sistem untuk secara konsisten mewakili bilangan bulat besar dan kecil, sebuah pendekatan yang pada akhirnya menggantikan semua sistem lainnya. Di awal {{nowrap|Abad ke-6 Masehi,}} matematikawan asal India [[Aryabhata]] memasukkan versi yang ada dari sistem ini dalam karyanya, dan bereksperimen dengan notasi yang berbeda. Pada abad ke-7, [[Brahmagupta]] menetapkan penggunaan 0 sebagai bilangan terpisah, dan menentukan hasil perkalian, pembagian, penambahan dan pengurangan nol dan semua bilangan lainnya — kecuali untuk hasil [[pembagian dengan nol]]. Sesamannya, uskup [[Kristen Siria|Siria]] [[Severus Sebokht]] (650 M) berkata, "Orang [[India]] memiliki metode perhitungan yang tidak dapat dipuji oleh satu kata pun. Sistem matematika rasional mereka, atau metode perhitungan mereka. Maksud saya sistemnya menggunakan sembilan simbol."<ref>Referensi: Revue de l'Orient Chretien oleh François Nau hlm. 327–338. (1929)</ref> Orang Arab juga mempelajari metode baru ini dan menyebutnya ''hesab''.
[[Berkas:Leibniz Stepped Reckoner.png|thumb|200px|Leibniz's [[Stepped Reckoner]] adalah kalkulator pertama yang bisa melakukan keempat operasi aritmatika.]]
Baris 32:
== Operasi aritmetika ==
{{See also|Operasi aljabar}}
Operasi aritmatika dasar adalah penjumlahan, pengurangan, perkalian dan pembagian, meskipun mata pelajaran ini juga mencakup operasi yang lebih maju, seperti manipulasi [[persentase]],<ref name=":2" /> [[akar kuadrat]] s, [[eksponen]], [[fungsi logaritmik]], dan bahkan [[fungsi trigonometri]], dalam nada yang sama seperti logaritma ([[prosthaphaeresis]]). Ekspresi aritmatika harus dievaluasi sesuai dengan [[urutan operasi]] yang dimaksudkan. Ada beberapa metode untuk menentukan ini, baik yang paling umum, bersama dengan [[notasi infix]], secara eksplisit menggunakan tanda kurung dan bergantung pada [[Urutan operasi aturan prioritas]], atau menggunakan notasi [[Notasi Polandia|awalan]] atau [[Notasi Polandia terbalik|postfix]], yang secara unik memperbaiki urutan eksekusi sendiri. Kumpulan objek apa pun di mana keempat operasi aritmatika (kecuali [[pembagian dengan nol]]) dapat dilakukan, dan di mana keempat operasi ini mematuhi hukum biasa (termasuk distribusi), disebut [[bidang matematika|bidang]].<ref name=Oxford>{{cite book
|title=Kamus Studi Matematika Oxford
|first1=Frank
|