Layang-layang (geometri): Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Dedhert.Jr (bicara | kontrib) Dibuat dengan menerjemahkan halaman "Kite (geometry)" Tag: halaman dengan galat kutipan pranala ke halaman disambiguasi Terjemahan Konten Terjemahan Konten v2 |
Tidak ada ringkasan suntingan |
||
(6 revisi perantara oleh satu pengguna lainnya tidak ditampilkan) | |||
Baris 6:
Setiap layang-layang adalah [[segiempat orthodiagonal]], yang artinya garis diagonalnya berada di sudut siku-siku; layang-layang juga merupakan [[Segiempat tangensial|segiempat tangensial—]]<nowiki/>sisinya bersinggungan dengan lingkaran dalam—apabila bentuknya cembung. Layang-layang cembung tepatnya segiempat yang sama-sama orthodiagonal dan tangensial. Layang-layang cembung mencakup kasus spesial seperti [[layang-layang siku-siku]] yang memiliki dua sudut siku-siku yang saling berhadapan, [[belah ketupat]] yang memiliki dua sumbu simetri yang berdiagonal, dan [[persegi]] yang juga merupakan kasus spesial dari layang-layang bersiku dan belah ketupat.
Segiempat dengan rasio terbesar antara [[keliling]] dengan [[diameter]] adalah layang-layang yang memiliki sudut 60°, 75°, dan 150°. Baik layang-layang cembung maupun cekung dapat membentuk ''{{Ill|prototile|en|prototile}}'' dari salah satu bentuk [[pengubinan Penrose]]. Layang-layang juga membentuk muka dari beberapa [[polihedron]] yang [[isohedral]] dan juga [[Teselasi|pengubinan]]. Layang-layang juga diaplikasikan ke dalam kajian {{Ill|
== Definisi dan klasifikasi ==
Baris 114:
{| class="wikitable" style="margin-left: auto; margin-right: auto; border: none;"
! colspan="3" |Polihedron
!Euklides
|- style="text-align:center;vertical-align:top;"
|[[Berkas:Rhombicdodecahedron.jpg|120x120px]]<br /><br />V4.3.4.3
Baris 121:
|[[Berkas:Tiling_Dual_Semiregular_V3-4-6-4_Deltoidal_Trihexagonal.svg|120x120px]]<br /><br />V4.3.4.6
|-
!Polihedron
!Euklides
! colspan="2" |
|- style="text-align:center;vertical-align:top;"
|[[Berkas:Deltoidalicositetrahedron.jpg|120x120px]]<br /><br />V4.4.4.3
|[[Berkas:Square_tiling_uniform_coloring_1.
|[[Berkas:H2-5-4-deltoidal.svg|120x120px]]<br /><br />V4.4.4.5
|[[Berkas:H2chess_246d.png|120x120px]]<br /><br />V4.4.4.6
|-
!Polihedron
! colspan="3" |
|- style="text-align:center;vertical-align:top;"
|[[Berkas:Deltoidalhexecontahedron.jpg|120x120px]]<br /><br />V4.3.4.5
Baris 138:
|[[Berkas:Deltoidal_pentahexagonal_tiling.png|120x120px]]<br /><br />V4.6.4.5
|-
!Euklides
! colspan="3" |
|- style="text-align:center;vertical-align:top;"
|[[Berkas:Tiling_Dual_Semiregular_V3-4-6-4_Deltoidal_Trihexagonal.svg|120x120px]]<br /><br />V4.3.4.6
Baris 149:
[[Trapezohedron]] adalah keluarga polihedron lainnya yang mempunyai muka berbentuk layang-layang kongruen. Rusuk dari salah satu kedua panjang sisinya bertemu pada dua titik "kutub", sedangkan rusuk dari panjang sisi lainnya membentuk lintasan zigizag ekuatorial di sekitar polihedron. Polihedron semacam itu merupakan ''[[Polihedron dual|dual]]'' dari {{Ill|antiprisma|en|antiprism}} seragam.{{R|grunbaum}} Trapezohedron acapkali ditemukan dalam [[dadu]] yang memiliki sepuluh muka.{{R|alsina-nelson}}
==
Ahli matematika [[Richard Schwartz (matematikawan)|Richard Schwartz]] mengkaji ''{{Ill|
== Referensi ==
Baris 229:
| year = 2000| s2cid = 12228995
}}</ref>
<ref name=chazelle-karntikoon-zheng>{{citation
Baris 401 ⟶ 388:
| title = Elementary Synthetic Geometry
| year = 1896}}</ref>
<ref name=idiot>{{citation
Baris 492 ⟶ 471:
| volume = 84
| year = 2011}}</ref>
<ref name=robertson>{{citation
|