Bilangan asli: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Pranala dalam secara matematis |
k wkfs |
||
(4 revisi perantara oleh 3 pengguna tidak ditampilkan) | |||
Baris 1:
[[Berkas:Three Baskets with Apples.svg|ka|jmpl|Bilangan asli dapat digunakan untuk menghitung (satu apel, dua apel, tiga apel, ...).]]
[[Berkas:Number line method.svg|jmpl|bilangan bulat]]
Dalam [[matematika]], terdapat dua kesepakatan mengenai himpunan '''bilangan asli'''. Yang pertama definisi menurut matematikawan tradisional, yaitu himpunan '''bilangan bulat positif''' yang bukan nol {1, 2, 3, 4, ...}. Sedangkan yang kedua definisi oleh logikawan dan ilmuwan komputer, adalah himpunan [[nol]] dan bilangan bulat positif {0, 1, 2, 3, ...}. Bilangan asli merupakan salah satu konsep matematika yg paling sederhana dan termasuk konsep pertama yang bisa dipelajari dan dimengerti oleh manusia, bahkan beberapa penelitian menunjukkan beberapa jenis kera juga bisa menangkapnya.[[Tanda (matematika)|Bilangan positif]] dilambangkan dengan tanda (+).<ref>{{Cite web|first=Tim Gakko Tosho|title=Matematika|url=https://static.buku.kemdikbud.go.id/content/pdf/bukuteks/kurikulum21/Matematika-BS-KLS-VII-Licensi.pdf|access-date=2024-12-6}}</ref>
Wajar apabila bilangan asli adalah jenis pertama dari bilangan yang digunakan untuk membilang, menghitung, dsb. Sifat yang lebih dalam tentang bilangan asli, termasuk kaitannya dengan [[bilangan prima]], dipelajari dalam [[teori bilangan]]. Untuk matematika lanjut, bilangan asli dapat dipakai untuk mengurutkan dan mendefinisikan sifat [[Operasi Hitung|hitungan]] suatu himpunan.
Setiap bilangan, misalnya [[1 (angka)|bilangan 1]], adalah konsep abstrak yg tak bisa tertangkap oleh indra manusia, tetapi bersifat [[universal]]. Salah satu cara memperkenalkan konsep himpunan semua bilangan asli sebagai sebuah struktur abstrak adalah melalui [[aksioma Peano]] (sebagai ilustrasi, lihat [http://planetmath.org/encyclopedia/PeanoArithmetic.html aritmetika Peano] {{Webarchive|url=https://web.archive.org/web/20070819031025/http://planetmath.org/encyclopedia/PeanoArithmetic.html |date=2007-08-19 }}).
Konsep bilangan-bilangan yg lebih umum dan lebih luas memerlukan pembahasan lebih jauh, bahkan kadang-kadang memerlukan kedalaman logika untuk bisa memahami dan mendefinisikannya. Misalnya dalam teori matematika, himpunan semua [[bilangan rasional]] bisa dibangun secara bertahap, diawali dari himpunan bilangan-bilangan asli.
|