Serat optik: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
k ~cite
 
(155 revisi perantara oleh 96 pengguna tidak ditampilkan)
Baris 1:
[[Berkas:Fibreoptic.jpg|right|thumb|200pxjmpl|Serat optik.]]
'''Serat optik''' adalah merupakan saluran [[https://www.adifree.com/2023/03/teknologi-fiber-optik-solusi-terbaik.html transmisi]] atau sejenis kabel yang terbuat dari [[kaca]] atau [[plastik]] yang sangat halus dan lebih kecil dari sehelai rambut, dan dapat digunakan untuk mentransmisikan sinyal [[cahaya]] dari suatu tempat ke tempat lain. Sumber cahaya yang digunakan biasanya adalah [[laser]] atau [[LED]].<ref name="Agrawal">Agrawal, G.P., 2002, ''Fiber-optic communication systems'', Ed. 3, New-York: John Wiley & Sons, Inc.</ref>. Kabel ini berdiameter lebih kurang lebih 120 mikrometer. Serat optik memiliki 3 lapisan utama yang terdiri dari ''core'', ''cladding'' dan ''coating''.<ref>{{Cite web|last=Rohmah|first=Yuyun Siti|title=Pengenalan Sistem Komunikasi Serat Optik|url=https://yuyunsitirohmah.staff.telkomuniversity.ac.id/files/2015/11/07-SISTEM-KOMUNIKASI-SERAT-OPTIK.pdf|website=Blog Staff Telkom University|access-date=2023-06-30}}</ref>
<!--Cahaya yang ada di dalam [[serat]] optik sulit keluar karena indeks bias dari kaca lebih besar daripada indeks bias dari udara, karena laser mempunyai spektrum yang sangat sempit. Kecepatan transmisi serat optik sangat tinggi sehingga sangat bagus digunakan sebagai saluran komunikasi. -->
 
Cahaya yang ada di dalam [[serat]] optik tidak keluar karena indeks bias dari kaca lebih besar daripada indeks bias dari udara, karena laser mempunyai [[spektrum]] yang sangat sempit. Kecepatan transmisi serat optik sangat tinggi sehingga sangat bagus digunakan sebagai saluran komunikasi.

Perkembangan teknologi serat optik saat ini, telah dapat menghasilkan pelemahan (attenuation) kurang dari 20 decibels (dB)/km. Dengan lebar jalur (bandwidth) yang besar sehingga kemampuan dalam mentransmisikan data menjadi lebih banyak dan cepat dibandingan dengan penggunaan kabel konvensional. Dengan demikian serat optik sangat cocok digunakan terutama dalam aplikasi sistem [[telekomunikasi]].<ref name="Hecht">Hecht, Jeff, 1999, ''The Story of Fiber Optics'', Ed. 4, Oxford University Press.</ref>. Pada prinsipnya serat optik memantulkan dan membiaskan sejumlah cahaya yang merambat didalamnya.
 
Efisiensi dari serat optik ditentukan oleh kemurnian dari bahan penyusun gelas/kaca. Semakin murni bahan gelas, semakin sedikit cahaya yang diserap oleh serat optik.
Baris 12 ⟶ 13:
Di lain pihak para ilmuwan selain mencoba untuk memandu cahaya melewati gelas (serat optik) namun juga mencoba untuk ”menjinakkan” cahaya. Kerja keras itupun berhasil ketika sekitar 1959 laser ditemukan. Laser beroperasi pada daerah frekuensi tampak sekitar 1014 Hertz-15 Hertz atau ratusan ribu kali frekuensi gelombang mikro.
 
Pada awalnya peralatan penghasil sinar laser masih serba besar dan merepotkan. Selain tidak efisien, ia baru dapat berfungsi pada suhu sangat rendah. Laser juga belum terpancar lurus. Pada kondisi cahaya sangat cerah pun, pancarannya gampang meliuk-liuk mengikuti kepadatan atmosfer. Waktu itu, sebuah pancaran laser dalam jarak 1 &nbsp;km, bisa tiba di tujuan akhir pada banyak titik dengan simpangan jarak hingga hitungan meter.
 
Sekitar tahun 60-an ditemukan serat optik yang kemurniannya sangat tinggi, kurang dari 1 bagian dalam sejuta. Dalam bahasa sehari-hari artinya serat yang sangat bening dan tidak menghantar listrik ini sedemikian murninya, sehingga konon, seandainya air laut itu semurni serat optik, dengan pencahayaan cukup mata normal akan dapat menonton lalu-lalangnya penghuni dasar Samudera Pasifik.
 
Seperti halnya laser, serat optik pun harus melalui tahap-tahap pengembangan awal. Sebagaimana medium transmisi cahaya, ia sangat tidak efisien. Hingga tahun 1968 atau berselang dua tahun setelah serat optik pertama kali diramalkan akan menjadi pemandu cahaya, tingkat atenuasi (kehilangan)-nya masih 20 &nbsp;dB/km. Melalui pengembangan dalam teknologi material, serat optik mengalami pemurnian, dehidran dan lain-lain. Secara perlahan tapitetapi pasti atenuasinya mencapai tingkat di bawah 1 &nbsp;dB/km.
 
=== Kronologi Perkembangan Serat Optik ===
Baris 24 ⟶ 25:
* [[1960]] Laboratorium Riset Bell dan Ali Javan serta koleganya William Bennett, Jr., dan Donald Herriott menemukan sebuah pengoperasian secara berkesinambungan dari [[laser helium-neon]].
* [[1960]] Theodore Maiman, seorang fisikawan dan insinyur elektro dari Hughes Research Laboratories, menemukan sumber laser dengan menggunakan sebuah kristal batu rubi sintesis sebagai medium.
* [[1961]] Peneliti industri Elias Snitzer dan Will Hicks mendemontrasikan sinar laser yang diarahkan melalui serat gelas yang tipis(serat optik). Inti serat gelas tersebut cukup kecil yang membuat cahaya hanya dapat melewati satu bagian saja tetapi banyak ilmuwan menyatakan bahwa serat tidak cocok untuk komunikasi karena rugi rugikerugian cahaya yang terjadi karena melewati jarak yang sangat jauh.
* [[1961]] Penggunaan laser yang dihasilkan dari batu Rubi untuk keperluan medis di Charles Campbell of the Institute of Ophthalmology at Columbia-Presbyterian Medical Center dan Charles Koester of the American Optical Corporation menggunakan prototipe ruby laser photocoagulator untuk menghancurkan tumor pada retina pasien.
* [[1962]] Tiga group riset terkenal yaitu [[General Electric]], [[IBM]], dan [[MIT]]’s Lincoln Laboratory secara simultan mengembangkan gallium arsenide laser yang mengkonversikan energi listrk secara langsung ke dalam cahaya infra merah dan perkembangan selanjutnya digunakan untuk pengembangan CD dan ''DVD player'' serta penggunaan [[pencetak laser]].
* [[1963]] Ahli fisika Herbert Kroemer mengajukan ide yaitu ''heterostructures'', kombinasi dari lebih dari satu semikonduktor dalam layer-layer untuk mengurangi kebutuhan energi untuk laser dan membantu untuk dapat bekerja lebih efisien. Heterostructures ini nantinya akan digunakan pada [[telepon seluler]] dan peralatan [[elektronik]] lainnya.
* [[1966]] [[Charles Kao]] dan [[George Hockham]] yang melakukan penelitian di Standard Telecommunications Laboratories Inggris mempublikasikan penelitiannya tentang kemampuan serat optik dalam mentransmisikan sinar laser yang sangat sedikit rugi-ruginyakerugiannya dengan menggunakan serat kaca yang sangat murni. Dari penemuan ini, kemudian para peneliti lebih fokus pada bagaimana cara memurnikan bahan serat kaca tersebut.
* [[1970]] Ilmuwan [[Corning]] Glass Works yaitu Donald Keck, Peter Schultz, dan Robert Maurer melaporkan penemuan serat optik yang memenuhi standar yang telah ditentukan oleh Kao dan Hockham. Gelas yang paling murni yang dibuat terdiri atas gabungan silika dalam tahap uap dan mampu mengurangi rugi-rugikerugian cahaya kurang dari 20 [[decibels]] per [[kilometer]], yang selanjutnya pada 1972, tim ini menemukan gelas dengan rugi-rugikerugian cahaya hanya 4 decibels per kilometer. Dan juga pada tahun 1970, Morton Panish dan Izuo Hayashi dari Bell Laboratories dengan tim Ioffe Physical Institute dari Leningrad, mendemontrasikan laser semikonduktor yang dapat dioperasikan pada [[temperatur ruang]]. Kedua penemuan tersebut merupakan terobosan dalam komersialisasi penggunaan fiber optik.
* [[1973]] John MacChesney dan Paul O. Connor pada Bell Laboratories mengembangkan proses [[pengendapan uap kimia]] ke bentuk ''ultratransparent glass'' yang kemudian menghasilkan serat optik yang mempunyai [[rugi-rugi]]kerugian sangat kecil dan diproduksi secara masalmassal.
[[Berkas:OF-MCVD.svg|thumbjmpl|300px|Proses pengendapan uap kimia untuk memodifikasi serat optik]]
* [[1975]] Insinyur pada Laser Diode Labs mengembangkan ''Laser Semikonduktor'', laser komersial pertama yang dapat dioperasikan pada suhu kamar.
* [[1977]] Perusahaan [[telepon]] memulai penggunaan serat optik yang membawa lalu lintas telepon. [[GTE]] membuka jalur antara Long Beach dan Artesia, California, yang menggunakan transmisi [[LED]]. Bell Labs mendirikan sambungan yang sama pada sistem telepon di Chicago dengan jarak 1,5 mil di bawah tanah yang menghubungkan 2 ''switching station''.
Baris 37 ⟶ 38:
* [[1987]] David Payne dari [[Universitas Southampton]] memperkenalkan ''optical amplifiers'' yang dikotori (dopped) oleh elemen erbium, yang mampu menaikan sinyal cahaya tanpa harus mengkonversikan terlebih dahulu ke dalam energi listrik.
* [[1988]] [[Kabel Translantic]] yang pertama menggunakan serat kaca yang sangat transparan, dan hanya memerlukan ''repeater'' untuk setiap 40 mil.
* [[1991]] Emmanuel Desurvire dari Bell Laboratories serta David Payne dan P. J. Mears dari Universitas Southampton mendemontrasikan ''opticalpenguat amplifiers''optik yang terintegrasi dengan kabel serat optik tersebut. Dengan keuntungannya adalah dapat membawa informasi 100 kali lebih cepat dari padadaripada kabel dengan penguat elektronik (''electronic amplifier'').
* [[1996]] TPC-5 merupakan jenis kabel serat optik yang pertama menggunakan penguat optik. Kabel ini melewati samudera pasifik mulai dari San Luis Obispo, [[California]], ke Guam, [[Hawaii]], dan Miyazaki, [[Jepang]], dan kembali ke Oregon coast dan mampu untuk menangani 320,000 panggilan telepon.
* [[1997]] Serat optik menghubungkan seluruh dunia, Link Around the Globe ([[FLAG]]) menjadi jaringan kabel terpanjang di seluruh dunia yang menyediakan infrastruktur untuk generasi internet terbaru.
 
=== Sistem Komunikasi Serat Optik (SKSO) ===
Berdasarkan penggunaannya maka SKSO dibagi atas beberapa generasi yaitu :
 
==== Generasi pertama (mulai 1975) ====
Sistem masih sederhana dan menjadi dasar bagi sistem generasi berikutnya, terdiri dari :
alat encoding : mengubah input (misal suara) menjadi sinyal listrik
transmitter : mengubah sinyal listrik menjadi sinyal gelombang, berupa LED
dengan panjang gelombang 0,87 &nbsp;mm.
serat silika : sebagai penghantar sinyal gelombang
repeater : sebagai penguat gelombang yang melemah di perjalanan
receiver : mengubah sinyal gelombang menjadi sinyal listrik, berupa fotodetektor
alat decoding : mengubah sinyal listrik menjadi output (misal suara)
Repeater bekerja melalui beberapa tahap, mula-mula ia mengubah sinyal gelombang yang sudah melemah menjadi sinyal listrik, kemudian diperkuat dan diubah kembali menjadi sinyal gelombang. Generasi pertama ini pada tahun 1978 dapat mencapai kapasitas transmisi sebesar 10 Gb.km/s.
 
==== Generasi kedua (mulai 1981) ====
Untuk mengurangi efek dispersi, ukuran teras serat diperkecil agar menjadi tipe mode tunggal. Indeks bias kulit dibuat sedekat-dekatnya dengan indeks bias teras. Dengan sendirinya transmitter juga diganti dengan diode laser, panjang gelombang yang dipancarkannya 1,3 &nbsp;mm. Dengan modifikasi ini generasi kedua mampu mencapai kapasitas transmisi 100 Gb.km/s, 10 kali lipat lebih besar daripada generasi pertama.
 
==== Generasi ketiga (mulai 1982) ====
Terjadi penyempurnaan pembuatan serat silika dan pembuatan chip diode laser berpanjang gelombang 1,55 &nbsp;mm. Kemurnian bahan silika ditingkatkan sehingga transparansinya dapat dibuat untuk panjang gelombang sekitar 1,2 &nbsp;mm sampai 1,6 &nbsp;mm. Penyempurnaan ini meningkatkan kapasitas transmisi menjadi beberapa ratus Gb.km/s.
 
==== Generasi keempat (mulai 1984) ====
Dimulainya riset dan pengembangan sistem koheren, modulasinya yang dipakai bukan modulasi intensitas melainkan modulasi frekuensi, sehingga sinyal yang sudah lemah intensitasnya masih dapat dideteksi. Maka jarak yang dapat ditempuh, juga kapasitas transmisinya, ikut membesar. Pada tahun 1984 kapasitasnya sudah dapat menyamai kapasitas sistem deteksi langsung. Sayang, generasi ini terhambat perkembangannya karena teknologi pirantiperanti sumber dan deteksi modulasi frekuensi masih jauh tertinggal. Tetapi tidak dapat disangkal bahwa sistem koheren ini punya potensi untuk maju pesat pada masa-masa yang akan datang.
 
==== Generasi kelima (mulai 1989) ====
Pada generasi ini dikembangkan suatu penguat optik yang menggantikan fungsi repeater pada generasi-generasi sebelumnya. Sebuah penguat optik terdiri dari sebuah diode laser InGaAsP (panjang gelombang 1,48 &nbsp;mm) dan sejumlah serat optik dengan doping erbium (Er) di terasnya. Pada saat serat ini disinari diode lasernya, atom-atom erbium di dalamnya akan tereksitasi dan membuat inversi populasi*, sehingga bila ada sinyal lemah masuk penguat dan lewat di dalam serat, atom-atom itu akan serentak mengadakan deeksitasi yang disebut emisi terangsang (stimulated emission) Einstein. Akibatnya sinyal yang sudah melemah akan diperkuat kembali oleh emisi ini dan diteruskan keluar penguat. Keunggulan penguat optik ini terhadap repeater adalah tidak terjadinya gangguan terhadap perjalanan sinyal gelombang, sinyal gelombang tidak perlu diubah jadi listrik dulu dan seterusnya seperti yang terjadi pada repeater. Dengan adanya penguat optik ini kapasitas transmisi melonjak hebat sekali. Pada awal pengembangannya hanya dicapai 400 Gb.km/s, tetapi setahun kemudian kapasitas transmisi sudah menembus harga 50 ribu Gb.km/s.
 
==== Generasi keenam ====
Pada tahun 1988 Linn F. Mollenauer memelopori sistem komunikasi soliton. Soliton adalah pulsa gelombang yang terdiri dari banyak komponen panjang gelombang. Komponen-komponennya memiliki panjang gelombang yang berbeda hanya sedikit, dan juga bervariasi dalam intensitasnya. Panjang soliton hanya 10-12 detik dan dapat dibagi menjadi beberapa komponen yang saling berdekatan, sehingga sinyal-sinyal yang berupa soliton merupakan informasi yang terdiri dari beberapa saluran sekaligus (wavelength division multiplexing). Eksperimen menunjukkan bahwa soliton minimal dapat membawa 5 saluran yang masing-masing membawa informasi dengan laju 5 Gb/s. Cacah saluran dapat dibuat menjadi dua kali lipat lebih banyak jika dibunakandigunakan multiplexing polarisasi, karena setiap saluran memiliki dua polarisasi yang berbeda. Kapasitas transmisi yang telah diuji mencapai 35 ribu Gb.km/s.
 
Cara kerja sistem soliton ini adalah efek Kerr, yaitu sinar-sinar yang panjang gelombangnya sama akan merambat dengan laju yang berbeda di dalam suatu bahan jika intensitasnya melebihi suatu harga batas. Efek ini kemudian digunakan untuk menetralisir efek dispersi, sehingga soliton tidak akan melebar pada waktu sampai di receiver. Hal ini sangat menguntungkan karena tingkat kesalahan yang ditimbulkannya amat kecil bahkan dapat diabaikan. Tampak bahwa penggabungan ciri beberapa generasi teknologi serat optik akan mampu menghasilkan suatu sistem komunikasi yang mendekati ideal, yaitu yang memiliki kapasitas transmisi yang sebesar-besarnya dengan tingkat kesalahan yang sekecil-kecilnya yang jelas, dunia komunikasi abad 21 mendatang tidak dapat dihindari lagi akan dirajai oleh teknologi serat optik.
 
== Kelebihan Serat Optik ==
Dalam penggunaan serat optik ini, terdapat beberapa keuntungan antara lain:<ref name="Keiser">Keiser, Gerard, (2000), ''Optical Fiber Communication, 3rd ed., McGraw-Hill, Singapore, ISBN 0-07-116468-5.''</ref> :
# Lebar jalur besar dan kemampuan dalam membawa banyak [[data]], dapat memuat kapasitas informasi yang sangat besar dengan kecepatan transmisi mencapai [[gigabit]]-per [[detik]] dan menghantarkan informasi jarak jauh tanpa pengulangan.
# Biaya pemasangan dan pengoperasian yang rendah serta tingkat keamanan yang lebih tinggi.
# Ukuran kecil dan ringan, sehingga hemat pemakaian ruang.
# [[Imun]], kekebalan terhadap gangguan [[elektromagnetik]] dan gangguan [[gelombang radio]].
# Non-Penghantar, tidak ada [[tenaga listrik]] dan percikan [[api]].
# Tidak [[berkarat]].
 
== Kabel Serat Optik ==
Secara garis besar [[kabel]] serat optik terdiri dari 2 bagian utama, yaitu ''cladding''selongsong dan ''core'' inti.<ref>Marcatili, E.A.J., ''Objectives of early fibers: Evolution of fiber types'', in S.E. Miller and A.G. Chynoweth, eds., ''Optical Fiber Telecommunication'', Academic, New York, 1979.</ref>. ''Cladding''Selongsong adalah selubung dari inti (core). Cladding mempunyai indekindeks bias lebih rendah daridaripada pada ''core''inti akan memantulkan kembali cahaya yang mengarah keluar dari coreinti kembali kedalamke coredalam inti lagi.
[[Berkas:Singlemode fibre structure.png|thumbjmpl|Bagian-bagian serat optik jenis ''single mode'']]
 
Dalam aplikasinya serat optik biasanya diselubungi oleh lapisan [[resin]] yang disebut dengan ''jacket''selubung luar. Biasanya, biasanyaselubung luar berbahan [[plastik]]. Lapisan ini dapat menambah kekuatan untuk kabel serat optik, walaupun tidak memberikan peningkatan terhadap sifat gelombang pandu optik pada kabel tersebut. Namun lapisan resin ini dapat menyerap cahaya dan mencegah kemungkinan terjadinya kebocoran cahaya yang keluar dari selubung inti. Serta hal ini dapat juga mengurangi [[cakap silang]] (''cross talk'') yang mungkin terjadi.<ref name="Hecht" />.
 
Pembagian serat optik dapat dilihat dari 2 macam perbedaan :
 
1. Berdasarkan mode yang dirambatkan:<ref>[http://www.corning.com/ Corning]</ref> :
* ''Single mode'' : serat optik dengan inti (''core'') yang sangat kecil (biasanya sekitar 8,3 mikron), diameter intinya sangat sempit mendekati [[panjang gelombang]] sehingga cahaya yang masuk ke dalamnya tidak terpantul-pantul ke dinding selongsong (''cladding''). BahagianBagian inti serat optik single-mode terbuat dari bahan kaca [[silika]] (SiO2) dengan sejumlah kecil kaca [[Germania]] (GeO2) untuk meningkatkan indeks biasnya. Untuk mendapatkan performa yang baik pada kabel ini, biasanya untuk ukuran selongsongnya adalah sekitar 15 kali dari ukuran inti (sekitar 125 mikron). Kabel untuk jenis ini paling mahal, tetapi memiliki pelemahan (kurang dari 0.35dB35&nbsp;dB per kilometer), sehingga memungkinmemungkinkan kecepatan yang sangat tinggi dari jarak yang sangat jauh. Standar terbaru untuk kabel ini adalah ITU-T G.652D, dan G.657.<ref>Oliviero, Andrew, and Woodward, Bill, (2009), ''Cabling: the complete guide to copper and fiber-optic networking'', Indianapolis:Wiley Publishing, Inc., ISBN 978-0-470-47707-6.</ref>.
* ''Multi mode '' : serat optik dengan diameter coreinti yang agak besar yang membuat laser di dalamnya akan terpantul-pantul di dinding claddingselongsong yang dapat menyebabkan berkurangnya bandwidthlebar jalur dari serat optik jenis ini.
 
2. Berdasarkan indeks bias coreinti:<ref name="Keiser" /> :
* ''Step indeks'' : pada serat optik step indeks, core memiliki [[indeks bias]] yang [[homogen]].
* ''Graded indeks'' : indeks bias core semakin mendekat ke arah cladding semakin kecil. Jadi pada graded indeks, pusat core memiliki nilai indeks bias yang paling besar. Serat graded indeks memungkinkan untuk membawa bandwidth yang lebih besar, karena pelebaran pulsa yang terjadi dapat diminimalkan.
[[Berkas:Optical fiber cable.jpg|thumbjmpl|leftkiri|200px|Kabel serat optik]]
 
2. Berdasarkan indeks bias core<ref name="Keiser" /> :
* ''Step indeks'' : pada serat optik step indeks, core memiliki [[indeks bias]] yang [[homogen]].
* ''Graded indeks'' : indeks bias core semakin mendekat ke arah cladding semakin kecil. Jadi pada graded indeks, pusat core memiliki nilai indeks bias yang paling besar. Serat graded indeks memungkinkan untuk membawa bandwidth yang lebih besar, karena pelebaran pulsa yang terjadi dapat diminimalkan.
[[Berkas:Optical fiber cable.jpg|thumb|left|200px|Kabel serat optik]]
== Pelemahan ==
[[Pelemahan]] (''Attenuation'') [[cahaya]] sangat penting diketahui terutama dalam merancang sistem telekomunikasi serat optik itu sendiri. Pelemahan cahaya dalam serat optik adalah adanya penurunan rata-rata daya optik pada kabel serat optik, biasanya diekspresikan dalam [[decibel]] (dB) tanpa tanda negatif. Berikut ini beberapa hal yang menyumbang kepada pelemahan cahaya pada serat optik:<ref>Snyder, A.W., & Love, J.D., 1983, ''Optical waveguide Theory'', New York: Chapman & Hall.</ref>:
# Penyerapan (Absorption)<br />Kehilangan cahaya yang disebabkan adanya kotoran dalam serat optik.
# Penyebaran (Scattering)
# Kehilangan radiasi (radiative losses)
 
Reliabilitas dari serat optik dapat ditentukan dengan satuan [[BER]] ([[Bit error rate]]). Salah satu ujung serat optik diberi masukan data tertentu dan ujung yang lain mengolah data itu. Dengan intensitas laser yang rendah dan dengan panjang serat mencapai beberapa km, maka akan menghasilkan kesalahan. Jumlah kesalahan persatuan waktu tersebut dinamakan BER. Dengan diketahuinya BER maka, Jumlah kesalahan pada serat optik yang sama dengan panjang yang berbeda dapat diperkirakan besarnya.
Baris 107 ⟶ 109:
== Kode warna pada kabel serat optik ==
=== Selubung luar ===
Dalam standarisasinyastandardisasinya kode warna dari selubung luar (''jacket'') kabel serat optik jenis ''Patch Cord'' adalah sebagai berikut:
 
{| class=wikitable
Baris 114 ⟶ 116:
|Kuning || serat optik single-mode
|-style="background:Orange;color:white"
|OrenJingga || serat optik multi-mode
|-style="background:Aqua;color:black"
|Aqua || Optimal laser 10 giga 50/125 mikrometer serat optik multi-mode
Baris 129 ⟶ 131:
# ST (Straight Tip): bentuknya seperti bayonet berkunci hampir mirip dengan konektor BNC. Sangat umum digunakan baik untuk kabel multi mode maupun single mode. Sangat mudah digunakan baik dipasang maupun dicabut.
# Biconic: Salah satu konektor yang kali pertama muncul dalam komunikasi fiber optik. Saat ini sangat jarang digunakan.
# D4: konektor ini hampir mirip dengan FC hanya berbeda ukurannya saja. Perbedaannya sekitar 2 &nbsp;mm pada bagian ''ferrule''-nya.
# SMA: konektor ini merupakan pendahulu dari konektor ST yang sama-sama menggunakan penutup dan pelindung. Namun seiring dengan berkembangnya ST konektor, maka konektor ini sudah tidak berkembang lagi penggunaannya.
# E200
Baris 138 ⟶ 140:
# SC-DC
 
Selain itu pada konektor tersebut biasanya menggunakan warna tertentu dengan maksud sebagai berikut:
 
{| class=wikitable
Baris 155 ⟶ 157:
|colspan=2|Merah|| || Penggunaan khusus
|}
 
== Serat Optik di Indonesia ==
Perkembangan serat optik di Indonesia tidak lepas dari perkembangan sejarah serat optik didunia, yang pada awalnya pertama kalinya ditemukan di Jerman pada tahun 1930 an. Pada saat itu serat optik belum dapat digunakan. Selanjutnya pada waktu hampir bersamaan pada tahun 1950 an ilmuwan Inggris dan Jepang berhasil membuat jenis serat optik yang mampu mengirimkan gambar. Saat itu serat optik berupa serat kaca yang dibungkus lagi dengan serat lain. Penelitian terus berlanjut hingga beberapa tahun berikutnya diketemukan serat optik yang memiliki kemampuan memindahkan cahaya dengan kemurnian yang tinggi. Namun demikian saat masih belum dapat dikatakan ideal. Penelitian selanjutnya adalah dengan percobaan penggunaan material sehingga di ketemukan serat optik yang memiliki kemampuan yang sangat bagus. Dan pada tahun 1980-an di mana serat optik sudah mampu mentransmisikan gelombang cahaya dengan efisien maka lomba indunstri serat optik dimulai.<ref>{{Cite web |url=http://www.dct.co.id/home/artikel/191-sejarah-perkembangan-fiber-optik-indonesia.html |title=Sejarah Perkembangan Fiber Optik Indonesia<!-- Judul yang dihasilkan bot --> |access-date=2016-06-24 |archive-date=2016-05-24 |archive-url=https://web.archive.org/web/20160524162255/http://www.dct.co.id/home/artikel/191-sejarah-perkembangan-fiber-optik-indonesia.html |dead-url=yes }}</ref>
 
Perkembangan jaringan serat optik di indonesia tidak terlepas dari perkembangan industri telekomunikasi. Beberapa operator telekomunikasi dan penyedia jasa multimedia tercatat telah menggelar jaringan fiber optik ini yakni [[Telkom Indonesia]], [[Indosat]], [[Excelcomindo]], dan Indonesia Comnet Plus. Jaringan-jaringan ini telah mencakup beberapa pulau utama di indonesia yakni Jawa, Bali, Sumatra, Kalimantan dan Sulawesi. Hingga saat ini, telkom masih menjadi operator telekomunikasi yang memiliki jaringan fiber optik terpanjang di Indonesia yakni memcapai 13.600.
 
Dan sejarah perkembangan serat optik di Indonesia tidak lepas dari muncul nya perusahaan serat optik seperti STT dan STL yang punya peranan besar dengan perkembangan serat optik indonesia selanjutnya. Tidak jelas kapan persis nya dimulai sejarah perkembangan serat optik di Indonesia. namun perkembangan selanjutnya lebih mengarah pada pemmfaatan serat optik itu sendiri. Penggunaan serat optik di Indonesia mengalami perkembangan pesat hal ini di sebab kan dengan serat optik, maka data yang di kirimkan lebih cepat dan akurat. Saat ini penggunaan serat optik di indonesia di antara nya adalah untuk jaringan internet,pengiriman data,telekomunikasi,perangkat pengintaian,dll.
 
Perusahaan penyedia jaringan serat optik Indonesia saat ini ada banyak,di antara nya adalah fiber optik [[Telkom]], [[MNCTV]], [[Biznet Networks]] dan [[First Media]]. Kelebihan internet yang menggunakan serat optik dibanding nirkabel adalah koneksi lebih stabil dan pengiriman data jauh lebih cepat. Pemanfaatan serat optik indonesia sebagai alat pengiriman data biasanya di gunakan di pabrik,industri atau gedung,sehingga arus data jauh lebih lancar.
 
Telkom mengungkapkan hingga saat ini,persentase kabel tembaga dab serat optik berimbang. ''“Sekarang posisi nya lima puluh persen kabel tembaga dan lima puluh persen kabel serat optik”'' ujar Dian Rahmawan, Direktur Consumer Service Telkom saat ditemui di acara fiber to the home conference. Telkom mengklaim jaringan serat optiknya menjangkau 7 juta rumah di Indonesia. dia meyakini kabel serat optik akan menjadi tumpuan layanan telekomunikasi dimasa depan. “2020 akan pakai fiber (serat optik) semua.<ref>[http://www.datacon.co.id/Kabel2009JaringanFiberoptik.html Jaringan Kabel Serat Optik di Indonesia- 2009<!-- Judul yang dihasilkan bot -->]</ref>
 
== Referensi ==
Baris 166 ⟶ 179:
 
== Pranala luar ==
 
* {{id}} [http://yulian.firdaus.or.id/2006/11/21/fiber-optic/ Mengenal Komunikasi Serat Optik]
* {{en}} [http://www.thefoa.org/ The Fiber Optic Association]
* {{en}} [http://www.jimhayes.com/lennielw/ Lennie Lightwave's Guide To Fiber Optics]
* {{en}} [http://www.instalasijaringan.com/ Lennie Lightwave's Guide To Fiber Optic]
* {{en}} [http://www.rp-photonics.com/fibers.html ''Fibers'' - article in RP Photonics Encyclopedia of Laser Physics and Technology]
* {{en}} [http://www.howstuffworks.com/fiber-optic.htm How Fiber Optics Work]
Baris 177 ⟶ 187:
[[Kategori:Telekomunikasi]]
[[Kategori:Kabel sinyal]]
[[Kategori:Sensor]]
 
[[Kategori:Ilmu dan teknik kaca]]
[[af:Optiese vesel]]
[[ar:ألياف بصرية]]
[[bg:Оптично влакно]]
[[bn:অপটিক্যাল ফাইবার]]
[[bs:Optičko vlakno]]
[[ca:Fibra òptica]]
[[ckb:کێبڵی تیشکی]]
[[cs:Optické vlákno]]
[[da:Lysleder]]
[[de:Lichtwellenleiter]]
[[el:Οπτική ίνα]]
[[en:Optical fiber]]
[[eo:Optika fibro]]
[[es:Fibra óptica]]
[[fa:فیبر نوری]]
[[fi:Valokuitu]]
[[fr:Fibre optique]]
[[gl:Fibra óptica]]
[[he:סיב אופטי]]
[[hi:प्रकाशीय तन्तु]]
[[hr:Optičko vlakno]]
[[hu:Optikai szál]]
[[it:Fibra ottica]]
[[ja:光ファイバー]]
[[ka:ოპტიკური ბოჭკო]]
[[kn:ಆಪ್ಟಿಕಲ್‌ ಫೈಬರ್]]
[[ko:광섬유]]
[[mk:Оптички влакна]]
[[ml:ഒപ്റ്റിക്കല്‍ ഫൈബര്‍]]
[[mr:प्रकाशवाहक तंतु]]
[[ms:Gentian optik]]
[[nl:Optische vezel]]
[[nn:Optisk fiber]]
[[no:Fiberoptikk]]
[[pl:Światłowód]]
[[pt:Fibra óptica]]
[[ro:Fibră optică]]
[[ru:Оптическое волокно]]
[[scn:Fibbra ottica]]
[[simple:Optical fiber]]
[[sk:Optické vlákno]]
[[sl:Optično vlakno]]
[[sq:Fibrat optike]]
[[sr:Оптички кабл]]
[[su:Serat optik]]
[[sv:Fiberoptik]]
[[ta:ஒளியிழை]]
[[tr:Fiberoptik]]
[[uk:Оптоволокно]]
[[yi:פייבער אפטיק]]
[[zh:光導纖維]]