Hukum sirkuit Kirchhoff: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
hasil terjemahan dari wikipedia English. |
Fitur saranan suntingan: 3 pranala ditambahkan. |
||
(33 revisi perantara oleh 23 pengguna tidak ditampilkan) | |||
Baris 1:
'''Hukum-hukum Sirkuit Kirchhoff'''
Kedua hukum sirkuit ini dapat diturunkan dari [[persamaan Maxwell]],
▲'''Hukum-hukum Sirkuit Kirchhoff''' adalah dua persamaan yang membahas [[kekekalan muatan]] dan energi dalam [[sirkuit listrik]], dan pertama dijabarkan pada tahun 1845 oleh [[Gustav Kirchhoff]]. Hukum-hukum ini juga sering disebut sebagai ''Hukum Kirchhoff'' (lihat juga [[hukum Kirchhoff]] untuk arti lain) dan seringkali digunakan dalam [[teknik elektro]]
▲Kedua hukum sirkuit ini dapat diturunkan dari [[persamaan Maxwell]], tapi Kirchhoff ada sebelum [[James Clerk Maxwell|Maxwell]] dan menggunakan pekerjaan dari [[Georg Ohm]] untuk menghasilkan hukumnya.
== Hukum Arus Kirchhoff ==
[[
▲[[File:KCL.png|framed|arus yang memasuki titik percabangan sama besar dengan arus yang meninggalkan titik tersebut.''i''<sub>1</sub> + ''i''<sub>4</sub> = ''i''<sub>2</sub> + ''i''<sub>3</sub>]]
Hukum ini juga disebut '''Hukum I Kirchhoff''', '''Hukum titik Kirchhoff''', '''Hukum percabangan Kirchhoff''', atau KCL (Kirchhoff's Current Law).
Baris 14 ⟶ 12:
:Jumlah total arus pada sebuah titik adalah nol.
Mengingat bahwa arus adalah besaran bertanda (positif atau negatif) yang menunjukan arah arus tersebut menuju atau keluar dari titik, maka prinsip ini bisa dirumuskan menjadi
:<math>\sum_{k=1}^n {I}_k = 0</math>
Baris 24 ⟶ 22:
:<math>\sum_{k=1}^n \tilde{I}_k = 0</math>
Hukum ini berdasar pada kekekalan muatan, dengan muatan (dalam satuan coulomb) adalah hasil kali dari arus ([[ampere]]) dan waktu (detik).
=== Padat muatan berubah ===
Hukum pertama Kirchhoff hanya dapat digunakan jika [[padat muatan]] konstan. Anggap arus masuk ke dalam sebuah lempeng dari [[kapasitor]]. Jika ada permukaan tertutup di sekitar satu (hanya satu dari dua) lempeng tersebut, arus masuk melalui permukaan
Namun, arus yang melalui suatu permukaan yang melingkupi seluruh kapasitor (kedua lempeng) akan memenuhi hukum pertama Kirchhoff karena arus yang masuk ke dalam salah satu lempeng akan sama besar dengan arus yang keluar dari lempeng satunya, dan biasanya dalam analisis sirkuit hanya itu yang diperhitungkan, namun masalah akan muncul jika yang dilihat hanya satu lempeng. Contoh kasus lain dimana hukum ini tidak bekerja adalah arus pada [[antena (radio)|antena]]. Karena pada antena, arus masuk ke dalam antena dari transmitter,
[[James Clerk Maxwell|Maxwell]] memperkenalkan konsep [[arus perpindahan]] untuk menjelaskan kasus-kasus tersebut. Arus yang masuk ke dalam lempeng kapasitor sama dengan kecepatan akumulasi muatan maka juga sama dengan kecepatan perubahan [[fluks listrik]] karena muatan tersebut (fluks listrik juga menggunakan satuan [[coulomb]] seperti muatan listrik dalam satuan [[Sistem Internasional|SI]]). Kecepatan perubahan fluks inilah, <math>\psi \ </math>, yang disebut Maxwell sebagai arus perpindahan <math>I_\mathrm D</math> dan disatukan dengan rumus
Baris 46 ⟶ 44:
== Hukum tegangan Kirchhoff ==
[[
Hukum ini juga disebut sebagai '''Hukum kedua kirchhoff''', '''Hukum
▲[[File:Kirchhoff voltage law.svg|thumb|200px|Jumlah dari semua tegangan di sekitar loop (putaran) sama dengan nol. v<sub>1</sub> + v<sub>2</sub> + v<sub>3</sub> - v<sub>4</sub> = 0]]
▲Hukum ini juga disebut sebagai '''Hukum kedua kirchhoff''', '''Hukum loop (putaran) Kirchhoff''', dan '''KVL (Kirchhoff's Voltage Law)'''.
Prinsip kekekalan energi mengatakan bahwa
:Jumlah terarah (melihat orientasi tanda positif dan negatif) dari [[beda potensial]] listrik ([[tegangan]]) di sekitar sirkuit tertutup sama dengan nol.
::::::: atau
:secara lebih sederhana, jumlah dari [[gaya elektromotif|emf]] dalam lingkaran tertutup ekivalen dengan jumlah turunnya potensial pada lingkaran itu.
::::::: atau
:Jumlah hasil kali resistansi konduktor dan arus pada konduktor dalam lingkaran tertutup sama dengan total [[Gaya Elektromotif
Mirip dengan hukum pertama Kirchhoff, dapat ditulis sebagai:
Baris 61 ⟶ 58:
:<math>\sum_{k=1}^n V_k = 0</math>
Disini, ''n'' adalah jumlah tegangan listrik yang diukur. [[Tegangan listrik]] ini juga bisa berbentuk kompleks:
:<math>\sum_{k=1}^n \tilde{V}_k = 0</math>
Baris 77 ⟶ 74:
:<math>\oint_C \mathbf{E} \cdot d\mathbf{l} = 0,</math>
yang menyatakan bahwa [[integral garis]] [[medan listrik]] di sekitar lingkaran tertutup (''loop'') C adalah nol.
Untuk mengembalikannya ke bentuk khusus, integral ini dapat dipisah-pisah untuk mendapatkan tegangan pada komponen tertentu.mponents.
=== Keterbatasan ===
Hukum ini adalah penyederhanaan dari [[Hukum Induksi Faraday]] untuk kasus khusus dimana tidak ada fluktuasi [[medan magnet]] yang menyambungkan lingkaran tertutup (''loop''). Maka hukum ini cukup untuk menghitung sirkuit yang hanya berisi [[resistor]] dan kapasitor.
== Lihat juga ==
* [[Hukum Kirchhoff]]
* [[Hukum Faraday]]
Baris 92 ⟶ 87:
== Referensi ==
{{No footnotes|date=August 2009}}
* {{cite book
* {{cite book
* {{cite book
* Howard W. Johnson, Martin Graham, ''High-speed signal propagation: advanced black magic'', Prentice Hall Professional, 2003 ISBN
== Pranala
* http://www.sasked.gov.sk.ca/docs/physics/u3c13phy.html{{Pranala mati|date=Februari 2021 |bot=InternetArchiveBot |fix-attempted=yes }}
* [http://academicearth.org/lectures/basic-circuit-analysis-method-kvl-and-kcl-mmethod MIT video lecture] on the KVL and KCL methods
{{DEFAULTSORT:Kirchhoff's Circuit Laws}}
[[Kategori:Listrik]]
[[Kategori:Teorema Sirkuit]]
[[Kategori:Elektronika]]
|