Gempa bumi: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Dwianto08 (bicara | kontrib)
Tag: Suntingan perangkat seluler Suntingan peramban seluler
 
(978 revisi antara oleh lebih dari 100 100 pengguna tak ditampilkan)
Baris 1:
{{Redirect|Gempa bumi di Indonesia|Daftar gempa bumi di Indonesia|Daftar gempa bumi di Indonesia}}
[[Gambar:Quake epicenters 1963-98.png|thumb|400px|Pusat-pusat gempa di seluruh dunia, 1963–1998]]
{{For|Gempa bumi pada tahun ini|Daftar gempa bumi tahun {{CURRENTYEAR}}}}
[[File:Map of earthquakes 1900-.svg|thumb|280px|Gempa bumi dengan skala [[Skala magnitudo seismik|magnitudo]] 6,0+ dari tahun 1900 sampai 2017]]
[[File:JogjaEarthquake27Mei2006-3.jpg|thumb|280px|Bangunan hancur akibat dari [[Gempa bumi Yogyakarta Mei 2006]]]]
 
'''Gempa bumi''' ({{lang-eng|'''Earthquake'''}}) adalah fenomena guncangan permukaan tanah akibat pelepasan energi secara tiba-tiba di bawah [[litosfer]] sehingga menimbulkan gelombang seismik. Intensitas gempa bumi bisa bermacam-macam, mulai dari gempa yang sangat lemah dan tidak dapat dirasakan, hingga gempa bumi dahsyat yang melempar benda-benda ke udara, merusak infrastruktur penting, dan menimbulkan kehancuran di seluruh kota. Aktivitas gempa bumi di suatu lokasi tertentu adalah laju rata-rata pelepasan energi seismik per satuan volume.
'''Gempa bumi''' adalah getaran yang terjadi permukaan [[bumi]]. Gempa bumi biasa disebabkan oleh pergerakan [[kerak bumi]] (lempeng bumi). Kata gempa bumi juga digunakan untuk menunjukkan daerah asal terjadinya kejadian gempa bumi tersebut. Bumi kita walaupun padat, selalu bergerak, dan gempa bumi terjadi apabila tekanan yang terjadi karena pergerakan itu sudah terlalu besar untuk dapat ditahan.
 
Gempa bumi dapat terjadi secara alami atau disebabkan oleh aktivitas manusia, seperti [[penambangan]], fracking, dan uji coba [[nuklir]]. Titik awal pecahnya disebut [[hiposenter]] atau fokus, sedangkan permukaan tanah yang berada tepat di atasnya disebut [[episentrum]]. Gempa bumi dapat disebabkan oleh kesalahan geologis, atau oleh aktivitas [[gunung berapi]], tanah longsor, dan peristiwa lainnya. Frekuensi, jenis, dan ukuran gempa bumi di suatu wilayah menentukan aktivitas seismiknya, yang mencerminkan tingkat rata-rata pelepasan energi seismik.
==Anatomi gempa bumi==
Gempa bumi terjadi setiap hari di [[bumi]], namun kebanyakan kecil dan tidak menyebabkan kerusakan apa-apa. Gempa bumi kecil juga dapat mengiringi gempa bumi besar, dan dapat terjadi sesudah, sebelum, atau selepas gempa bumi besar tersebut.
 
Peristiwa gempa bumi yang paling terkenal adalah [[gempa bumi dan tsunami Samudra Hindia 2004]], memakan lebih dari 230.000 korban jiwa, dan gempa bumi terkuat yang pernah tercatat yaitu [[gempa bumi Valdivia 1960]] di Chili dengan skala 9,5 {{M|w}}. Salah satu gempa bumi paling mematikan dalam sejarah adalah [[Gempa bumi Shaanxi 1556]], yang terjadi pada tanggal 23 Januari 1556 di Provinsi [[Shaanxi]], Tiongkok. Lebih dari 830.000 orang meninggal.<ref>{{cite web |url=https://earthquake.usgs.gov/earthquakes/world/most_destructive.php |title=Earthquakes with 50,000 or More Deaths |archive-url=https://web.archive.org/web/20091101175733/http://earthquake.usgs.gov/earthquakes/world/most_destructive.php |archive-date=November 1, 2009 |url-status=dead |publisher=U.S. Geological Survey}}</ref> Sebagian besar penduduk tinggal di yaodong, sebuah bangunan berbahan batu dan tanah liat, banyak korban yang tewas ketika bangunan tersebut runtuh. [[Gempa bumi Tangshan 1976]], yang menewaskan antara 240.000 dan 655.000 orang, merupakan [[Daftar gempa bumi terkuat sepanjang sejarah#Gempa bumi paling Mematikan|gempa bumi paling mematikan]] dalam sejarah modern hingga saat ini.
==Intensitas==
Gempa bumi diukur dengan menggunakan alat yang dinamakan Pengukur Richter. Gempa bumi dibagi ke dalam skala dari satu hingga sembilan berdasarkan ukurannya ([[skala Richter]]). Gempa bumi juga dapat diukur dengan menggunakan ukuran [[Skala Mercalli]].
 
Gempa bumi menimbulkan berbagai dampak, seperti guncangan tanah dan [[pencairan tanah]], yang mengakibatkan kerusakan besar dan korban jiwa. Jika episentrum gempa besar terletak di lepas pantai, dasar laut mungkin akan mengalami pergeseran yang cukup besar sehingga menyebabkan [[tsunami]]. Gempa bumi juga dapat memicu tanah longsor. Gempa bumi dipengaruhi oleh pergerakan [[lempeng tektonik]] di sepanjang [[Sesar (geologi)|sesar aktif]], termasuk sesar normal, sesar terbalik (dorong), dan sesar mendatar, dengan dinamika pelepasan energi dan patahan yang diatur oleh teori pantulan elastis.
==Tipe gempa bumi==
 
== Terminologi ==
===Gempa bumi tektonik===
Gempa bumi dapat berlangsung dalam hitungan 10 hingga 30 detik. Dalam peristiwa [[gempa bumi berdorongan besar]], guncangan dapat berlangsung 5–7 menit, seperti pada peristiwa [[Gempa bumi Samudra Hindia 2004|gempa bumi Sumatra 2004]], yang berlangsung hingga 10 menit lamanya.
{{Utama|Gempa bumi tektonik}}
Gempa bumi tektonik disebabkan oleh perlepasan [[tenaga]] yang terjadi karena pergeseran lempengan [[plat tektonik]] seperti layaknya gelang karet ditarik dan dilepaskan dengan tiba-tiba. Tenaga yang dihasilkan oleh tekanan antara batuan dikenal sebagai kecacatan tektonik. Teori dari ''tektonik plate'' (plat tektonik) menjelaskan bahwa bumi terdiri dari beberapa lapisan batuan, sebagian besar area dari lapisan kerak itu akan hanyut dan mengapung di lapisan seperti [[salju]]. Lapisan tersebut begerak perlahan sehingga berpecah-pecah dan bertabrakan satu sama lainnya. Hal inilah yang menyebabkan terjadinya gempa tektonik.<ref>[http://www.e-smartschool.com/pnu/002/PNU0020004.asp e smart school]</ref> Gempa bumi tektonik memang unik. Peta penyebarannya mengikuti pola dan aturan yang khusus dan menyempit, yakni mengikuti pola-pola pertemuan lempeng-lempeng tektonik yang menyusun [[kerak bumi]]. Dalam ilmu kebumian ([[geologi]]), kerangka teoretis tektonik lempeng merupakan ''postulat'' untuk menjelaskan fenomena gempa bumi tektonik yang melanda hampir seluruh kawasan, yang berdekatan dengan batas pertemuan lempeng tektonik. Contoh gempa tektonik ialah seperti yang terjadi di [[Yogyakarta]], [[Indonesia]] pada [[Sabtu]], [[27]] [[Mei]] [[2006]] dini hari, pukul 05.54 WIB.<ref name="Suara">[http://www.suarakarya-online.com/news.html?id=145891 Suara Karya Online]</ref>
 
Dalam pengertian yang paling umum, gempa bumi adalah peristiwa seismik apa pun—baik yang terjadi secara alami maupun yang disebabkan oleh manusia—yang menimbulkan [[gelombang seismik]]. Gempa bumi sebagian besar disebabkan oleh pecahnya [[Sesar (geologi)|patahan geologi]], namun juga disebabkan oleh peristiwa lain seperti aktivitas gunung berapi, [[tanah longsor]], ledakan ranjau, fracking, dan uji coba [[nuklir]]. Titik pecahnya awal suatu gempa disebut hiposenter atau fokusnya. [[Episentrum]] adalah titik di permukaan tanah tepat di atas [[hiposenter]].
===Gempa bumi gunung berapi===
Gempa bumi gunung berapi terjadi berdekatan dengan [[gunung berapi]] dan mempunyai bentuk keretakan memanjang yang sama dengan gempa bumi tektonik. Gempa bumi gunung berapi disebabkan oleh pergerakan [[magma]] ke atas dalam gunung berapi, di mana geseran pada batu-batuan menghasilkan gempa bumi.
 
Aktivitas seismik suatu wilayah adalah frekuensi, jenis, dan ukuran gempa bumi yang dialami dalam kurun waktu tertentu. Kegempaan di suatu lokasi tertentu di bumi adalah laju rata-rata pelepasan energi seismik per satuan volume.
Ketika [[magma]] bergerak ke permukaan [[gunung berapi]], ia bergerak dan memecahkan batu-batuan serta mengakibatkan getaran berkepanjangan yang dapat bertahan dari beberapa jam hingga beberapa hari.
 
===Latar belakang===
Gempa bumi [[gunung berapi]] terjadi di kawasan yang berdekatan dengan gunung berapi, seperti Pergunungan Cascade di barat Laut Pasifik, [[Jepang]], Dataran Tinggi Islandia, and titik merah gunung berapi seperti [[Hawaii]].
{{Lihat|Lempeng Tektonik}}
[[Berkas:Plates tect2 id.svg|thumb|300px|Peta lempeng tektonik]]
[[Berkas:Global plate motion 2008-04-17.jpg|thumb|300px|Gerakan lempengan tektonik global]]
 
Gempa bumi tektonik terjadi dimana saja di muka bumi dimana terdapat simpanan energi regangan elastis yang cukup untuk mendorong perambatan rekahan di sepanjang bidang patahan. Sisi-sisi patahan bergerak melewati satu sama lain dengan mulus dan secara aseismik hanya jika tidak terdapat ketidakteraturan atau ketimpangan di sepanjang permukaan patahan yang meningkatkan tahanan gesek. Sebagian besar permukaan patahan memiliki kekasaran seperti itu, yang mengarah ke bentuk perilaku stick-slip.
==Penyebab terjadinya gempa bumi==
Kebanyakan gempa bumi disebabkan dari pelepasan energi yang dihasilkan oleh tekanan yang dilakukan oleh lempengan yang bergerak. Semakin lama tekanan itu kian membesar dan akhirnya mencapai pada keadaan dimana tekanan tersebut tidak dapat ditahan lagi oleh pinggiran lempengan. Pada saat itu lah gempa bumi akan terjadi.
 
Gempa bumi sering menyebabkan banyak korban jiwa, karena letaknya yang dekat dengan daerah berpenduduk padat atau lautan, dimana gempa bumi sering menimbulkan [[tsunami]] yang dapat menghancurkan berjarak ribuan kilometer jauhnya. Wilayah-wilayah yang paling berisiko mengalami banyak korban jiwa adalah wilayah-wilayah dimana gempa bumi relatif jarang terjadi namun kuat, dan wilayah-wilayah miskin dengan aturan bangunan seismik yang lemah, tidak ditegakkan, atau tidak ada sama sekali.
Gempa bumi biasanya terjadi di perbatasan lempengan lempengan tersebut. Gempa bumi yang paling parah biasanya terjadi di perbatasan lempengan kompresional dan translasional. [[Gempa bumi fokus dalam]] kemungkinan besar terjadi karena materi lapisan litosfer yang terjepit kedalam mengalami [[transisi fase]] pada kedalaman lebih dari 600 km.
 
== Jenis Gempa bumi ==
Beberapa gempa bumi lain juga dapat terjadi karena pergerakan [[magma]] di dalam gunung berapi. Gempa bumi seperti itu dapat menjadi gejala akan terjadinya letusan gunung berapi. Beberapa gempa bumi (jarang namun) juga terjadi karena menumpuknya massa air yang sangat besar di balik [[dam]], seperti [[Dam Karibia]] di [[Zambia]], [[Afrika]]. Sebagian lagi (jarang juga) juga dapat terjadi karena injeksi atau akstraksi cairan dari/ke dalam bumi (contoh. pada beberapa pembangkit listrik tenaga panas bumi dan di [[Rocky Mountain Arsenal]]. Terakhir, gempa juga dapat terjadi dari peledakan bahan peledak. Hal ini dapat membuat para ilmuwan memonitor tes rahasia [[senjata nuklir]] yang dilakukan pemerintah. Gempa bumi yang disebabkan oleh manusia seperti ini dinamakan juga [[seismisitas terinduksi]]
===Gempa bumi Tektonik===
[[Berkas:Fault_types.svg|jmpl|Tiga tipe patahan:<br />A. Strike-slip<br />B. Normal<br />C. Terbalik]]
Gempa bumi tektonik terjadi di mana saja di bumi di tempat yang terdapat energi tekanan elastis yang terakumulasi dengan cukup untuk mendorong perambatan fraktur di sepanjang bidang [[Patahan (geologi)|patahan]]. Permukaan bumi terdiri dari lempeng-lempeng yang berdekatan antara satu dengan yang lain. Lempeng-lempeng ini selalu mengalami pergerakan yang per tahunnya bisa mencapai 10&nbsp;cm.<ref>{{Cite web|last=US Department of Commerce|first=NOAA|title=NWS JetStream Max - World's Major Tectonic Plates|url=https://www.weather.gov/jetstream/plates_max|website=www.weather.gov|language=EN-US|access-date=2023-03-11|archive-date=2023-03-11|archive-url=https://web.archive.org/web/20230311090808/https://www.weather.gov/jetstream/plates_max|dead-url=no}}</ref> Sisi-sisinya hanya dapat bergerak saling melewati satu sama lain secara mulus dan tanpa disertai getaran (aseismik) jika tidak adanya ketidakteraturan atau asperitas di sepanjang permukaan patahan yang meningkatkan hambatan gesekan. Sebagian besar permukaan lempeng memiliki asperitas, yang menyebabkan bentuk perilaku pergesekan yang rapat. Saat patahan terkunci, gerakan relatif yang terus berlangsung di antara lempeng-lempeng akan meningkatkan tekanan dan, oleh karenanya, menyebabkan terakumulasinya energi tegangan di dalam volume di sekitar permukaan patahan. Hal ini terus berlanjut hingga tegangan antara dua atau lebih lempeng yang terjadi mencapai tingkat yang cukup untuk membobol asperitas, yang kemudian menyebabkan terjadinya pergeseran mendadak pada bagian patahan yang terkunci dan melepaskan energi yang terakumulasi.<ref name="Ohnaka">{{cite book|author=Ohnaka, M.|year=2013|url=https://books.google.com/books?id=Bp0gAwAAQBAJ&pg=PA234|title=The Physics of Rock Failure and Earthquakes|publisher=Cambridge University Press|isbn=978-1-107-35533-0|page=148}}</ref>
 
===Gempa bumi sesar aktif===
==Sejarah gempa bumi besar pada abad ke-20 dan 21==
{{Lihat|Sesar (Geologi)}}
[[Gambar:SanFranHouses06.JPG|thumb|350px|Kerusakan akibat gempa bumi di San Francisco pada tahun 1906]]
[[File:Epicenter.gif|thumb|240px|Sebuah diagram memperlihatkan [[Episentrum|episenter]] fokus gempa bumi]]
[[Gambar:EarthquakeFreewayCa1989.jpg|thumb|350px|Sebagian jalan layang yang runtuh akibat gempa bumi Loma Prieta pada tahun 1989]]
Ada tiga jenis sesar utama, yang dapat menyebabkan gempa bumi antar lempeng yaitu: sesar jenis normal, sesar naik (dorongan), dan sesar strike-slip. Sesar normal dan sesar terbalik merupakan contoh dari dip-slip, dimana perpindahan sepanjang sesar searah dengan arah kemiringan dan pergerakan pada patahan tersebut melibatkan komponen vertikal.
 
Panjang maksimum patahan yang dipetakan (dapat pecah dalam satu waktu) adalah sekitar 1.000 km (620 mil). Contohnya adalah gempa bumi di Alaska (1957), Chile ([[Gempa bumi Valdivia 1960|1960]]), dan Sumatra ([[Gempa bumi dan tsunami Samudra Hindia 2004|2004]]), semuanya berada di zona subduksi. Gempa bumi terpanjang yang terjadi pada patahan strike-slip, seperti [[Patahan San Andreas]] (1857, [[Gempa bumi San Francisco 1906|1906]]), [[Patahan Anatolia Utara]] di Turki ([[Gempa bumi Erzincan 1939|1939]]), dan [[Patahan Semangko]] di Sumatra ([[Gempa bumi Padang Panjang 1926|1926]]), panjangnya sekitar setengah hingga sepertiga panjang sepanjang batas lempeng subduksi, dan panjang sepanjang patahan normal bahkan lebih pendek.
*[[6 Maret]] [[2007]] - [[Gempa bumi Sumatera Barat Maret 2007|Gempa bumi]] tektonik mengguncang provinsi [[Sumatera Barat]], [[Indonesia]]. Laporan terakhir menyatakan 79 orang tewas [http://www.metrotvnews.com/berita.asp?id=34659].
*[[27 Mei]] [[2006]] - [[Gempa bumi Yogyakarta Mei 2006|Gempa bumi]] tektonik kuat yang mengguncang Daerah Istimewa Yogyakarta dan Jawa Tengah pada 27 Mei 2006 kurang lebih pukul 05.55 WIB selama 57 detik. Gempa bumi tersebut berkekuatan 5,9 pada skala Richter. United States Geological Survey melaporkan 6,2 pada skala Richter; lebih dari 6.000 orang tewas, dan lebih dari 300.000 keluarga kehilangan tempat tinggal.
*[[8 Oktober]] [[2005]] - [[Gempa bumi Asia Selatan 2005|Gempa bumi besar]] berkekuatan 7,6 [[skala Richter]] di [[Asia Selatan]], berpusat di [[Kashmir]], [[Pakistan]]; lebih dari 1.500 orang tewas.
*[[26 Desember]] [[2004]] - [[Gempa_bumi_Samudra_Hindia_2004|Gempa bumi dahsyat]] berkekuatan 9,3 skala Richter mengguncang [[Aceh]] dan [[Sumatera Utara]] sekaligus menimbulkan gelombang [[tsunami]] di [[samudera Hindia]].
*[[26 Desember]] [[2003]] - Gempa bumi kuat di Bam, barat daya [[Iran]] berukuran 6.5 pada skala Richter dan menyebabkan lebih dari 41.000 orang tewas.
*[[21 Mei]] [[2002]] - Di utara [[Afghanistan]], berukuran 5,8 pada skala Richter dan menyebabkan lebih dari 1.000 orang mati.
*[[26 Januari]] [[2001]] - [[India]], berukuran 7,9 pada skala Richter dan menewaskan 2.500 ada juga yang mengatakan jumlah korban mencapai 13.000 orang.
*[[21 September]] [[1999]] - [[Taiwan]], berukuran 7,6 pada skala Richter, menyebabkan 2.400 korban tewas.
*[[17 Agustus]] [[1999]] - barat [[Turki]], berukuran 7,4 pada skala Richter dan merenggut 17.000 nyawa.
*[[25 Januari]] [[1999]] - Barat [[Colombia]], pada magnitudo 6 dan merenggut 1.171 nyawa.
*[[30 Mei]] [[1998]] - Di utara [[Afghanistan]] dan [[Tajikistan]] dengan ukuran 6,9 pada skala Richter menyebabkan sekitar 5.000 orang tewas.
*[[17 Januari]] [[1995]] - Di Kobe, [[Jepang]] dengan ukuran 7,2 skala Richter dan merenggut 6.000 nyawa.
*[[30 September]] [[1993]] - Di Latur, [[India]] dengan ukuran 6,0 pada skala Richter dan menewaskan 1.000 orang.
*[[21 Juni]] [[1990]] - Di barat laut [[Iran]], berukuran 7,3 pada skala Richter, merengut 50.000 nyawa.
*[[7 Desember]] [[1988]] - Barat laut [[Armenia]], berukuran 6,9 pada skala Richter dan menyebabkan 25.000 kematian.
*[[19 September]] [[1985]] - Di [[Mexico]] Tengah dan berukuran 8,1 pada Skala Richter, meragut lebih dari 9.500 nyawa.
*[[16 September]] [[1978]] - Di timur laut [[Iran]], berukuran 7,7 pada skala Richter dan menyebabkan 25.000 kematian.
*[[28 Juli]] [[1976]] - Tangshan, [[China]], berukuran 7,8 pada skala Richter dan menyebabkan 240.000 orang terbunuh.
*[[4 Februari]] [[1976]] - Di [[Guatemala]], berukuran 7,5 pada skala Richter dan menyebabkan 22.778 terbunuh.
*[[29 Februari]] [[1960]] - Di barat daya pesisir pantai [[Atlantik]] di [[Maghribi]] pada ukuran 5,7 skala Richter, menyebabkan kira-kira 12.000 kematian dan memusnahkan seluruh kota Agadir.
*[[26 Desember]] [[1939]] - Wilayah Erzincan, [[Turki]] pada ukuran 7,9, dan menyebabkan 33.000 orang tewas.
*[[24 Januari]] [[1939]] - Di Chillan, [[Chile]] dengan ukuran 8,3 pada skala Richter, 28.000 kematian.
*[[31 Mei]] [[1935]] - Di Quetta, [[India]] pada ukuran 7,5 skala Richter dan menewaskan 50.000 orang.
*[[1 September]] [[1923]] - Di [[Yokohama]], [[Jepang]] pada ukuran 8,3 skala Richter dan merenggut sedikitnya 140.000 nyawa.
 
===Jenis Sesar===
==Persiapan menghadapi gempa bumi==
====Sesar normal====
*Persiapan untuk keadaan darurat
[[Sesar (geologi)|Sesar normal]] terjadi terutama di daerah yang keraknya memanjang seperti batas [[divergen]]. Gempa bumi yang terkait dengan sesar normal umumnya berkekuatan kurang dari magnitudo 7. Besaran maksimum di sepanjang sesar normal bahkan lebih terbatas karena banyak di antaranya berlokasi di sepanjang pusat penyebaran.
# Menentukan tempat-tempat berlindung yang aman jika terjadi gempa bumi. Tempat berlindung yang aman adalah tempat yang yang dapat melindungi anda dari benda-benda yang jatuh atau mebel yang ambruk, misalnya di kolong [[meja]].
# Menyediakan [[air]] minum untuk keperluan darurat. Bekas botol [[air mineral]] dapat digunakan untuk menyimpan air minum. Kebutuhan air minum biasanya 2 sampai 3 liter sehari untuk satu orang.
# Menyiapkan [[tas ransel]] yang berisi (atau dapat diisi) barang-barang yang sangat dibutuhkan di tempat pengungsian. Barang-barang yang sangat diperlukan dalam keadaan darurat misalnya:
## Lampu senter berikut [[baterai]] cadangannya
## Air minum
## Kotak P3K berisi obat penghilang rasa sakit, plester, pembalut dan sebagainya
## Makanan yang tahan lama seperti biskuit
## Sejumlah [[uang]] tunai
## Buku tabungan
## [[Korek api]]
## [[Lilin]]
## [[Helm]]
## Pakaian dalam
## Barang-barang berharga yang harus dibawa di saat keadaan darurat
# Mengencangkan [[mebel]] yang mudah rubuh (seperti lemari pakaian) dengan langit-langit atau dinding dengan menggunakan [[logam]] berbentuk siku atau sekrup agar tidak mudah rubuh di saat terjadi gempa bumi
# Mencegah kaca jendela atau kaca lemari pakaian agar tidak pecah berantakan di saat gempa bumi dengan memilih kaca yang kalau pecah tidak berserakan dan melukai orang (''Safety Glass'') atau dengan menempelkan kaca [[film]]
# Mencari tahu lokasi tempat evakuasi dan rumah sakit yang terdekat. Jika pemerintah setempat tidak mempunyai tempat evakuasi, pastikan anda tidak pergi ke tempat yang lebih rendah atau tempat yang dekat dengan pinggir [[laut]]/[[sungai]] untuk menghindari [[Tsunami|tsunami]]
 
====Sesar naik====
*Ketika Terjadi Gempa Bumi
[[File:Sesarbaribis.jpg|thumb|240px|[[Sesar Baribis]]. Sesar naik aktif di wilayah [[Jakarta Selatan]]]]
# Matikan api [[kompor]] jika anda sedang memasak. Matikan juga alat-alat elektronik yang dapat menyebabkan timbulnya api. Jika terjadi kebakaran di [[dapur]], segera padamkan api dengan menggunakan alat pemadam api. Jika tidak mempunyai pemadam api gunakan pasir atau karung basah
[[Sesar (geologi)|Sesar naik]] atau terbalik terjadi di daerah yang keraknya memendek seperti pada batas konvergen. Sesar terbalik, terutama yang berada di sepanjang batas konvergen, berhubungan dengan gempa bumi paling kuat (disebut [[Gempa bumi berdorongan besar|gempa bumi megathrust]]) termasuk hampir semua gempa berkekuatan magnitudo 8 atau lebih. Gempa bumi megathrust bertanggung jawab atas sekitar 90% total momen seismik yang terjadi di seluruh dunia.
# Membuka [[pintu]] dan mencari jalan keluar dari rumah atau gedung
# Cari informasi mengenai gempa bumi yang terjadi lewat [[televisi]] atau [[radio]]
# Utamakan keselamatan terlebih dahulu, jika terjadi kerusakan pada tempat Anda berada, segeralah mengungsi ke tempat pengungsian terdekat
# Tetap tenang dan tidak terburu-buru keluar dari rumah atau gedung. Tunggu sampai gempa mereda, dan sesudah agak tenang, ambil tas ransel berisi barang-barang keperluan darurat dan keluar dari rumah/gedung menuju ke tanah kosong sambil melindungi kepala dengan helm atau barang-barang yang dapat digunakan untuk melindungi kepala
# Jika anda harus berjalan di tengah jalan raya, berhati-hatilah terhadap papan reklame yang jatuh, tiang [[listrik]] yang tiba-tiba rubuh, [[kabel]] listrik, pecahan kaca, dan benda-benda yang berjatuhan dari atas gedung
# Pastikan tidak ada anggota keluarga yang tertinggal pada saat pergi ke tempat evakuasi. Jika bisa ajaklah tetangga dekat Anda untuk pergi bersama-sama
# Jika gempa bumi terjadi pada saat Anda sedang menyetir kendaraan, jangan sekali-kali mengerem dengan mendadak atau menggunakan rem darurat. Kurangilah kecepatan secara bertahap dan hentikan kendaraan anda di bahu jalan. Jangan berhenti di dekat pompa bensin, di bawah kabel tegangan tinggi, atau di bawah jembatan penyeberangan.
 
====Sesar geser====
*[[Household seismic safety]]
[[Sesar (geologi)|Sesar geser]] atau mendatar adalah struktur curam di mana kedua sisi sesar tergelincir secara horizontal melewati satu sama lain; batas transformasi adalah jenis sesar strike-slip tertentu. Sesar mendatar, khususnya transformasi benua, dapat menghasilkan gempa bumi besar hingga berkekuatan 8. Sesar mendatar cenderung berorientasi vertikal, menghasilkan lebar sekitar 10 km (6,2 mil) di dalam kerak bumi yang rapuh. Dengan demikian, gempa dengan magnitudo jauh lebih besar dari 8 tidak mungkin terjadi.
*[[Seismic retrofit]]
 
[[File:Gunung Batu.jpg|thumb|240px|[[Sesar Lembang]]. Sesar geser aktif yang paling terkenal di [[Kabupaten Bandung]]]]
== Lihat juga ==
Selain itu, terdapat hierarki tingkat tegangan pada ketiga jenis gangguan. Sesar dorong dihasilkan oleh sesar tertinggi, sesar geser oleh sesar menengah, dan sesar normal oleh tingkat tegangan terendah. Hal ini dapat dengan mudah dipahami dengan mempertimbangkan arah tegangan utama terbesar, yaitu arah gaya yang “mendorong” massa batuan pada saat terjadi patahan. Pada sesar normal, massa batuan terdorong ke bawah dalam arah vertikal, sehingga gaya dorong (tegangan utama terbesar) sama dengan berat massa batuan itu sendiri.
* [[Persiapan bencana]]
* [[Awan gempa]]
* [[Daftar Gempa Bumi Terdahsyat di Dunia]]
* [[Daftar gempa bumi besar di Indonesia]]
* [[Gempa bumi 26 Desember 2004]]
* [[Gempa bumi Sumatra Maret 2005]]
* [[Gempa bumi Yogyakarta Mei 2006]]
 
===Energi yang dilepaskan===
==Pranala luar==
[[File:SH-60B helicopter flies over Sendai.jpg|thumb|240px|Kehancuran pada Bandara Sendai, setelah [[Gempa bumi dan tsunami Tōhoku 2011]]]]
*{{en}} [http://www.eqnet.org/ EarthQuake Information NETwork]
Untuk setiap peningkatan satuan besarnya, terdapat peningkatan sekitar tiga puluh kali lipat energi yang dilepaskan. Misalnya saja, gempa berkekuatan 6,0 dapat melepaskan energi sekitar 32 kali lebih banyak dibandingkan gempa berkekuatan 5,0 skala Richter, dan gempa berkekuatan 7,0 dapat melepaskan energi 1.000 kali lebih banyak dibandingkan gempa berkekuatan 5,0 magnitudo. Gempa berkekuatan 8,6 magnitudo dapat melepaskan energi yang sama dengan 10.000 [[bom atom]] seukuran yang digunakan pada [[Perang Dunia II]].<ref>{{cite journal |last1=Wyss |first1=M. |year=1979 |title=Estimating expectable maximum magnitude of earthquakes from fault dimensions |url=https://archive.org/details/sim_geology_1979-07_7_7/page/336 |journal=Geology |volume=7 |issue=7| pages=336–340 |bibcode=1979Geo.....7..336W |doi=10.1130/0091-7613(1979)7<336:EMEMOE>2.0.CO;2|issn = 0091-7613}}</ref>
*{{en}} [http://neic.usgs.gov/ National Earthquake Information Center]
*{{en}} [http://www.iris.washington.edu/seismon/ IRIS Seismic Monitor]
*{{id}} [http://www.bmg.go.id/map_rasa.asp Peta gempa bumi yang dapat dirasakan di Indonesia]
 
Hal ini terjadi karena energi yang dilepaskan saat gempa bumi, dan besarnya gempa, sebanding dengan luas patahan yang pecah dan penurunan tegangan. Oleh karena itu, semakin panjang dan lebar area patahan, maka besaran yang dihasilkan akan semakin besar. Namun, parameter terpenting yang mengendalikan magnitudo gempa maksimum pada suatu patahan bukanlah panjang maksimum yang tersedia, namun lebar tersedia karena lebar tersedia bervariasi sebesar 20 kali lipat. Sepanjang batas lempeng konvergen, sudut kemiringan bidang patahan sangat besar. dangkal, biasanya sekitar 10 derajat. Oleh karena itu, lebar bidang di bagian atas kerak bumi yang rapuh bisa mencapai 50–100 km (31–62 mil) (seperti di [[Gempa bumi dan tsunami Tōhoku 2011|Jepang, 2011]]), atau ([[Gempa bumi Alaska 1964|Alaska, 1964]]), yang memungkinkan terjadinya gempa bumi terkuat.
[[Kategori:Gempa bumi| ]]
 
===Kedalaman gempa bumi===
[[af:Aardbewing]]
[[File:Destroyed Governor office of West Sulawesi.jpg|thumb|240px|Kerusakan pada gedung setelah [[Gempa bumi Sulawesi Barat 2021]], dengan kedalaman dangkal {{convert|10|km|abbr=on}}]]
[[ar:زلزال]]
Mayoritas gempa bumi tektonik berasal dari [[Cincin Api Pasifik]] dengan kedalaman tidak melebihi puluhan kilometer. Gempa bumi yang terjadi pada kedalaman kurang dari 70 km (43 mil) diklasifikasikan sebagai gempa bumi "fokus dangkal", sedangkan gempa bumi dengan kedalaman fokus antara 70 dan 300 km (43 dan 186 mil) biasanya disebut "fokus sedang" atau gempa bumi dengan kedalaman menengah. Di zona subduksi, di mana kerak samudera yang lebih tua dan lebih dingin turun ke bawah lempeng tektonik lain, gempa bumi dengan fokus dalam dapat terjadi pada kedalaman yang jauh lebih besar (berkisar antara 300 hingga 700 km (190 hingga 430 mil)).
[[be-x-old:Землятрус]]
 
[[bg:Земетресение]]
Daerah subduksi yang aktif secara seismik ini dikenal sebagai zona Wadati–Benioff. Gempa bumi fokus dalam terjadi pada kedalaman di mana litosfer yang tersubduksi seharusnya tidak lagi rapuh karena suhu dan tekanan yang tinggi. Kemungkinan mekanisme terjadinya gempa dengan fokus dalam adalah patahan yang disebabkan oleh olivin yang mengalami transisi fase menjadi struktur spinel.
[[bn:ভূমিকম্প]]
 
[[bs:Potres]]
===Gempa vulkanik===
[[ca:Terratrèmol]]
{{Lihat|Gempa Vulkanik}}
[[cs:Zemětřesení]]
Gempa bumi sering terjadi di daerah [[letusan vulkanik]] dan disebabkan oleh patahan tektonik maupun pergerakan magma di [[gunung berapi]]. Gempa bumi semacam itu dapat menjadi peringatan dini akan terjadinya letusan gunung berapi, seperti yang terjadi pada [[letusan Gunung St. Helens 1980]]. Retentetan gempa dapat menjadi penanda lokasi aliran magma di seluruh gunung berapi. Kawanan ini dapat direkam oleh seismometer dan tiltmeter (alat yang mengukur kemiringan tanah) dan digunakan sebagai sensor untuk memprediksi letusan yang akan terjadi atau yang akan datang.
[[cv:Çĕр чĕтренĕвĕ]]
 
[[cy:Daeargryn]]
===Struktur dinamika===
[[da:Jordskælv]]
Gempa tektonik dimulai sebagai area slip awal pada permukaan patahan yang menjadi fokus. Setelah retakan dimulai, retakan tersebut mulai menyebar menjauhi fokus, menyebar di sepanjang permukaan patahan. Perambatan lateral akan terus berlanjut hingga retakan mencapai suatu penghalang, seperti ujung segmen sesar, atau suatu wilayah pada sesar yang tidak mempunyai tekanan yang cukup untuk memungkinkan terjadinya keruntuhan lanjutan. Untuk gempa bumi yang lebih besar, kedalaman keruntuhan akan dibatasi ke bawah oleh zona transisi getas-daktil dan ke atas oleh permukaan tanah. Mekanisme proses ini kurang dipahami karena sulit untuk menciptakan kembali pergerakan cepat seperti itu di laboratorium atau merekam gelombang seismik di dekat zona nukleasi akibat gerakan tanah yang kuat.
[[de:Erdbeben]]
 
[[el:Σεισμός]]
Dalam kebanyakan kasus, kecepatan pecahnya mendekati, namun tidak melebihi, kecepatan gelombang geser (gelombang S) batuan di sekitarnya.
[[en:Earthquake]]
 
[[eo:Tertremo]]
====Gempa bumi Supershear====
[[es:Sismo]]
[[File:Kahramanmaraş after 7.8 magnitude earthquake in Türkiye 5.jpg|thumb|240px|[[Gempa bumi Turki–Suriah 2023]] dengan kecepatan supershear, membunuh sekitar 60.000 jiwa]]
[[et:Maavärin]]
Dalam seismologi, gempa bumi supershear adalah gempa yang terjadi di sepanjang permukaan patahan dengan melebihi kecepatan gelombang geser seismik ([[gelombang S]]). Hal ini menyebabkan efek yang mirip dengan [[Dentuman sonik|ledakan sonik]].<ref>{{Cite web|url=http://news-service.stanford.edu/pr/2005/pr-agu_beroza-120705.html|title=A century after the 1906 earthquake, geophysicists revisit 'The Big One' and come up with a new model|last=Levy D.|work=Press release|publisher=Stanford University|date=December 2, 2005|access-date=June 12, 2008|archive-date=January 29, 2008|archive-url=https://web.archive.org/web/20080129092039/http://news-service.stanford.edu/pr/2005/pr-agu_beroza-120705.html|url-status=dead}}</ref>
[[eu:Lurrikara]]
 
[[fa:زمین‌لرزه]]
Beberapa peristiwa gempa bumi supershear:
[[fi:Maanjäristys]]
* [[Gempa bumi San Francisco 1906]] di [[California]], Amerika Serikat berkekuatan 7.9 ''{{M|w|link=y}}'' akibat pergeseran [[Sesar San Andreas]]
[[fr:Tremblement de terre]]
* [[Gempa bumi İzmit 1999]] di Turki berkuatan 7.6 ''{{M|w|link=y}}'' akibat pergeseran [[Sesar Anatolia Utara]]
[[gd:Crith-thalmhainn]]
* [[Gempa bumi Sichuan 2008]] di provinsi [[Sichuan]], Tiongkok berkekuatan 7.9 ''{{M|w|link=y}}'' akibat pergeseran Sesar Longmenshan
[[gl:Terremoto]]
* [[Gempa bumi dan tsunami Sulawesi 2018]] di [[Sulawesi Tengah]], [[Kota Palu]] berkekuatan 7.5 ''{{M|w|link=y}}'' akibat pergeseran [[Sesar Palu-Koro]]
[[gu:ધરતીકંપ]]
* [[Gempa bumi Turki–Suriah 2023]] berkekuatan 7.8 dan 7.5 ''{{M|w|link=y}}'' akibat pergerakan Sesar Anatolia Timur
[[he:רעידת אדמה]]
 
[[hr:Potres]]
Diketahui bahwa gempa pecah supershear merambat dengan kecepatan lebih besar dari kecepatan gelombang S. Sejauh ini semua hal ini telah diamati selama peristiwa-peristiwa strike-slip yang besar.
[[hu:Földrengés]]
 
[[io:Ter-tremo]]
====Gempa bumi lambat====
[[is:Jarðskjálfti]]
[[File:Pangandaran - view National Park.JPG|thumb|240px|Pemandangan [[Pantai Pangandaran]] setelah [[Gempa bumi dan tsunami Jawa 2006]]]]
[[it:Terremoto]]
Pecahan gempa bumi yang lambat terjadi dengan kecepatan yang luar biasa rendah. Salah satu bentuk gempa bumi lambat yang sangat berbahaya adalah [[tsunami|gempa tsunami]], ketika intensitas gempa yang dirasakan relatif rendah, dan disebabkan oleh kecepatan rambat yang lambat dari beberapa gempa bumi besar.
[[ja:地震]]
 
[[ka:მიწისძვრა]]
Gempa jenis ini tidak memberikan peringatan kepada penduduk di sekitar pantai, karena intensitasnya yang sangat rendah, seperti pada peristiwa [[Gempa bumi dan tsunami Jawa 2006]] dan [[Gempa bumi dan tsunami Jawa Timur 1994]], dimana penduduk hampir tidak merasakan guncangan gempa, dan ratusan orang tewas akibat tsunami setelahnya.<ref name="NRS">{{cite book|last=National Research Council (U.S.). Committee on the Science of Earthquakes|title=Living on an Active Earth: Perspectives on Earthquake Science|chapter-url=http://www.nap.edu/openbook.php?record_id=10493&page=282|access-date=8 July 2010|year=2003|publisher=National Academies Press|location=Washington, D.C.|isbn=978-0-309-06562-7|page=[https://archive.org/details/livingonactiveea0000unse/page/418 418]|chapter=5. Earthquake Physics and Fault-System Science|url=https://archive.org/details/livingonactiveea0000unse/page/418}}</ref>
[[ko:지진]]
 
[[la:Terrae motus]]
====Gempa bumi intralempeng====
[[lb:Äerdbiewen]]
{{Lihat|Gempa bumi intralempeng}}
[[lt:Žemės drebėjimas]]
Gempa bumi Intralempeng atau disebut gempa bumi Intraslab mengacu pada gempa bumi yang terjadi diluar perbatasan [[lempeng tektonik]]; gempa ini sangat berbeda dengan gempa tektonik biasa dengan kedalaman dangkal, yang terjadi di batas dari lempeng tektonik.
[[lv:Zemestrīce]]
 
[[ml:ഭൂകമ്പം]]
[[File:Damage from the 2009 Padang earthquake. Indonesia 2009. Photo- AusAID (10690967855).jpg|thumb|240px|[[Gempa bumi Sumatra Barat 2009]] salah satu contoh [[gempa bumi intralempeng]], dengan kedalaman {{convert|90|km|abbr=on}}]]
[[ms:Gempa bumi]]
Banyak kota yang menghadapi risiko seismik berupa gempa bumi intralempeng besar yang jarang terjadi. Penyebab gempa bumi ini seringkali tidak diketahui secara pasti. Dalam banyak kasus, kesalahan penyebab terkubur dalam-dalam dan terkadang bahkan tidak dapat ditemukan. Beberapa penelitian menunjukkan bahwa gempa dapat disebabkan oleh pergerakan cairan ke atas kerak bumi di sepanjang zona patahan kuno. Dalam keadaan seperti ini, sulit untuk memperkirakan bahaya seismik suatu kota, terutama jika hanya terjadi satu gempa bumi dalam sejarah. Beberapa kemajuan sedang dicapai dalam memahami mekanisme patahan yang menyebabkan gempa bumi ini.<ref>{{Cite journal|last1=Iwata |first1=Tomotaka |last2=Asano |first2=Kimiyuki |year=2011 |title=Characterization of the Heterogeneous Source Model of Intraslab Earthquakes Toward Strong Ground Motion Prediction |journal=Pure and Applied Geophysics |volume=168 |issue=1–2 |pages=117–124 |doi=10.1007/s00024-010-0128-7 |bibcode=2011PApGe.168..117I |s2cid=140602323 }}</ref><ref>{{Cite journal|last1=Senoa |first1=Tetsuzo |last2=Yoshida |first2=Masaki |year=2004 |title=Where and why do large shallow intraslab earthquakes occur? |journal=Physics of the Earth and Planetary Interiors |volume=141 |issue=3 |pages=183–206 |doi=10.1016/j.pepi.2003.11.002 |bibcode=2004PEPI..141..183S }}</ref>
[[nah:Tlālollīn]]
 
[[nl:Aardbeving]]
====Gempa awal====
[[nn:Jordskjelv]]
{{Lihat|Gempa awal}}
[[no:Jordskjelv]]
[[File:2018 Sulawesi earthquake map.svg|thumb|240px|Peta menampilkan gempa awal berkekuatan M6.1 sebelum '''gempa utama''' datang berkekuatan M7.5 pada [[Gempa bumi dan tsunami Sulawesi 2018]]]]
[[om:Chocho'a Lafa]]
 
[[pl:Trzęsienie ziemi]]
[[Gempa awal]] adalah guncangan gempa bumi pendahuluan yang terjadi sebelum gempa jauh yang lebih besar datang – dan disebut '''gempa utama''' – dan berkaitan dengannya dalam ruang dan waktu. Penetapan suatu gempa bumi sebagai gempa pendahuluan, gempa utama, atau gempa susulan hanya dapat dilakukan setelah rangkaian peristiwa yang lengkap telah terjadi.<ref name="Gates">{{cite book|last1=Gates|first1=A.|last2=Ritchie|first2=D.|title=Encyclopedia of Earthquakes and Volcanoes|url=https://books.google.com/books?id=b1sXfJCiCHQC&dq=foreshock+earthquake&pg=PA89|year=2006|publisher=Infobase Publishing|isbn=978-0-8160-6302-4|page=89|access-date=29 November 2010}}</ref>
[[pt:Sismo]]
 
[[qu:Pacha kuyuy]]
Aktivitas gempa awal telah terdeteksi pada sekitar 40% dari seluruh gempa bumi sedang hingga besar, dan sekitar 70% pada kejadian M>7.0. Guncangan ini terjadi dalam hitungan menit hingga hari atau bahkan lebih lama sebelum guncangan utama; misalnya, [[:en:2002 Sumatra earthquake|Gempa bumi Sumatra 2002]] dianggap sebagai gempa pendahuluan dari [[Gempa bumi Samudera Hindia 2004]] dengan jeda waktu lebih dari dua tahun sebelum peristiwa tersebut terjadi.<ref name="NRS">{{cite book|last=National Research Council (U.S.). Committee on the Science of Earthquakes|title=Living on an Active Earth: Perspectives on Earthquake Science|chapter-url=https://archive.org/details/livingonactiveea0000unse/page/418|access-date=29 November 2010|year=2003|publisher=National Academies Press|location=Washington D.C.|isbn=978-0-309-06562-7|page=[https://archive.org/details/livingonactiveea0000unse/page/418 418]|chapter=5. Earthquake Physics and Fault-System Science}}</ref>
[[ro:Cutremur]]
 
[[ru:Землетрясение]]
Namun beberapa gempa besar (M>8.0) tidak menunjukkan aktivitas gempa pendahuluan sama sekali, seperti pada peristiwa [[Gempa bumi Biak 1996|Gempa bumi Biak 1996 - M8.1]].
[[scn:Tirrimotu]]
 
[[sh:Potres]]
Peningkatan aktivitas gempa pendahuluan sulit diukur untuk masing-masing gempa bumi, namun akan terlihat ketika menggabungkan hasil dari berbagai peristiwa yang berbeda. Dari observasi gabungan tersebut, peningkatan sebelum guncangan utama diamati bertipe hukum kekuatan terbalik. Hal ini mungkin menunjukkan bahwa gempa pendahuluan menyebabkan perubahan tegangan yang mengakibatkan guncangan utama atau bahwa peningkatan tersebut terkait dengan peningkatan tegangan secara umum di wilayah tersebut.<ref name="Maeda">{{cite book|last=Maeda|first=K.|editor=Wyss M., Shimazaki K. & Ito A.|title=Seismicity patterns, their statistical significance and physical meaning|chapter-url=https://books.google.com/books?id=QIy6le4sCMAC&dq=foreshock&pg=PA381|access-date=29 November 2010|series=Reprint from Pageoph Topical Volumes|year=1999|publisher=Birkhäuser|isbn=978-3-7643-6209-6|pages=381–394|chapter=Time distribution of immediate foreshocks obtained by a stacking method}}</ref>
[[simple:Earthquake]]
 
[[sk:Zemetrasenie]]
====Gempa susulan====
[[sl:Potres]]
{{Lihat|Gempa susulan}}
[[sr:Земљотрес]]
[[Gempa susulan]] adalah gempa yang terjadi setelah gempa sebelumnya, yaitu gempa utama. Perubahan tekanan antar batuan yang cepat, dan tekanan dari gempa bumi asli merupakan penyebab utama terjadinya gempa susulan ini, bersamaan dengan pecahnya lapisan kerak bumi di sekitar bidang patahan saat menyesuaikan dengan efek gempa utama.<ref name=Britannica>{{Cite web|title=Aftershock {{!}} geology|url=https://www.britannica.com/science/aftershock-geology|access-date=2021-10-13|website=Encyclopedia Britannica|language=en|archive-date=2015-08-23|archive-url=https://web.archive.org/web/20150823124854/https://www.britannica.com/science/aftershock-geology|url-status=live}}</ref>
[[sv:Jordbävning]]
 
[[tg:Заминларза]]
[[File:Map of 2018 Lombok earthquake.svg|thumb|240px|Peta gempa utama dan susulan pada [[Gempa bumi Lombok Agustus 2018]]]]
[[th:แผ่นดินไหว]]
Gempa susulan terjadi di wilayah yang sama dengan gempa utama namun selalu berkekuatan lebih kecil, namun gempa tersebut masih cukup kuat untuk menyebabkan kerusakan yang lebih besar pada bangunan yang sebelumnya telah rusak akibat gempa utama. Jika gempa susulan lebih besar dari gempa utama, maka gempa susulan tersebut ditetapkan kembali sebagai gempa utama dan guncangan utama semula ditetapkan kembali sebagai gempa pendahuluan. Gempa susulan terbentuk saat kerak di sekitar bidang [[Sesar (geologi)|patahan]] yang tergeser menyesuaikan diri dengan efek gempa utama.
[[tl:Lindol]]
 
[[tr:Deprem]]
====Gempa bumi swarm====
[[uk:Землетрус]]
Gempa bumi swarm adalah kawanan gempa yang terjadi di suatu wilayah tertentu dalam waktu singkat dengan skala yang relatif sama. Gempa bumi ini berbeda dengan gempa bumi yang diikuti oleh serangkaian [[gempa susulan]] karena tidak ada guncangan utama, sehingga tidak ada gempa yang berkekuatan lebih besar dari gempa lainnya.
[[ur:زلزلہ کي تاريخ]]
 
[[vi:Động đất]]
Contoh gempa bumi swarm terjadi pada [[Kabupaten Sumedang]] dengan kekuatan 4,5, 4,8 dan 4,2 pada Desember 2023 dan Januari 2024.<ref>{{cite web|title=BRIN Ungkap Sesar Aktif Berkekuatan Besar Kepung Sumedang|url=https://www.cnnindonesia.com/teknologi/20240112163809-199-1048788/brin-ungkap-sesar-aktif-berkekuatan-besar-kepung-sumedang|website=[[CNN Indonesia]]|access-date=21 Juni 2024}}</ref>
[[wa:Tronnmint d' tere]]
 
[[yi:ערדציטערניש]]
====Seismik Gap====
[[zh:地震]]
[[File:Map of July Jakarta Earthquake.png|thumb|240px|Peta [[Zona subduksi Selat Sunda|Sunda Megathurst]] di selatan Jawa. Zona ini belum pernah mengalami gempa bumi besar >M8.0 dalam 200 tahun terakhir]]
[[zh-min-nan:Tē-tāng]]
 
[[zh-yue:地震]]
'''Seismik Gap''' atau '''Celah seismik''' adalah segmen [[Patahan (geologi)|patahan aktif]] yang tidak menghasilkan gempa bumi kuat dalam jangka waktu yang sangat lama, dibandingkan dengan segmen lain di sepanjang zona patahan yang sama.<ref>{{cite journal|doi=10.1029/91JB02210 | bibcode=1991JGR....9621419K | volume=96 | title=Seismic Gap Hypothesis: Ten years after | year=1991 | journal=Journal of Geophysical Research: Solid Earth | pages=21419–21431 | last1 = Kagan | first1 = Yan Y. | last2 = Jackson | first2 = David D.| issue=B13 }}</ref>
 
Terdapat hipotesis atau teori yang menyatakan bahwa dalam jangka waktu yang lama, perpindahan pada setiap segmen harus sama dengan yang dialami seluruh bagian sesar lainnya. Oleh karena itu, setiap celah yang besar dan berkepanjangan dianggap sebagai segmen patahan yang paling mungkin mengalami gempa bumi di masa depan.<ref>{{cite journal | url=https://doi.org/10.1007%2FBF00876211 | doi=10.1007/BF00876211 | title=Seismic gaps and plate tectonics: Seismic potential for major boundaries | year=1979 | last1=McCann | first1=W. R. | last2=Nishenko | first2=S. P. | last3=Sykes | first3=L. R. | last4=Krause | first4=J. | journal=Pure and Applied Geophysics Pageoph | volume=117 | issue=6 | pages=1082–1147 | bibcode=1979PApGe.117.1082M | s2cid=129377355 }}</ref>
 
Di [[Selat Sunda]] merupakan zona "Seismic Gap" yaitu zona kekosongan gempa besar selama ratusan tahun dan berada di antara 2 gempa besar yang merusak dan memicu tsunami yaitu [[Gempa bumi dan tsunami Jawa 2006|Gempa bumi Jawa M7,7 (2006)]] dan [[Gempa bumi Sumatra September 2007|Gempa bumi Bengkulu M8,4 (2007)]].<ref>{{cite web|url=https://www.m.antaranews.com/amp/berita/2645049/megathrust-selat-sunda-zona-seismik-gap-yang-patut-diwaspadai|title=Megathrust Selat Sunda zona seismik gap yang patut diwaspadai|website=[[Antara.news]]|access-date=23 Juni 2024}}</ref>
 
====Intensitas dan kekuatan====
{{Lihat|Skala magnitudo momen|Skala intensitas Mercalli yang dimodifikasi}}
 
Skala instrumental yang digunakan untuk menggambarkan besarnya gempa dimulai dengan [[Skala Richter]] pada tahun 1930an. Ini adalah pengukuran amplitudo suatu peristiwa yang relatif sederhana, dan penggunaannya menjadi minimal di abad ke-21. Skala gempa yang digunakan saat ini untuk otoritas [[Seismologi]] adalah [[Skala magnitudo momen]] untuk menggantikan [[Skala Richter]] yang dianggap tidak akurat saat ini.
 
[[File:M 5.6 - 18 km WSW of Ciranjang-hilir, Indonesia (West Java) ShakeMap.jpg|thumb|220px|Peta menampilkan guncangan intensitas [[Gempa bumi Cianjur 2022]] dengan skala MMI IX (''Hebat'') pada [[Skala intensitas Mercalli yang dimodifikasi|skala intensitas Mercalli]]]]
 
[[Gelombang seismik]] merambat melalui bagian dalam bumi dan dapat direkam oleh [[seismometer]] pada jarak yang sangat jauh. Besaran gelombang permukaan dikembangkan pada tahun 1950an sebagai alat untuk mengukur gempa bumi jarak jauh dan meningkatkan akurasi gempa bumi yang lebih besar. [[Skala magnitudo momen]] tidak hanya mengukur amplitudo guncangan tetapi juga memperhitungkan momen seismik (total luas keruntuhan, rata-rata slip sesar, dan kekakuan batuan). [[Skala intensitas Mercalli yang dimodifikasi]] didasarkan pada efek yang diamati dan terkait dengan intensitas guncangan.<ref>{{Cite book |last1=Earle |first1=Steven |date=September 2015 |title=Physical Geology |edition=2nd |chapter=11.3 Measuring Earthquakes |chapter-url=https://opentextbc.ca/geology/chapter/11-3-measuring-earthquakes/ |language=en |access-date=2022-10-22 |archive-date=2022-10-21 |archive-url=https://web.archive.org/web/20221021040843/https://opentextbc.ca/geology/chapter/11-3-measuring-earthquakes/ |url-status=live }}</ref>
 
== Frekuensi gempa bumi ==
[[File:Comerio, Luca (1878-1940) - Vittime del terremoto di Messina (dicembre 1908).jpg|thumb|200px|[[Gempa bumi Messina 1908|Gempa bumi dan tsunami di Messina, Italia]] memakan hingga 120,000 korban jiwa, salah satu bencana terburuk dalam sejarah [[Eropa]].]]
 
Diperkirakan sekitar 500.000 gempa bumi terjadi setiap tahunnya, dan dapat dideteksi dengan instrumentasi saat ini. Sekitar 100.000 gempa bumi di antaranya dapat dirasakan. Gempa bumi kecil hampir terus-menerus terjadi di seluruh wilayah didunia seperti di [[California]] dan [[Alaska]], serta di [[El Salvador]], [[Meksiko]], [[Guatemala]], [[Chili]], [[Peru]], [[Indonesia]], [[Filipina]], [[Iran]], [[Pakistan]], [[Azores|Kepualauan Azores]] di [[Portugal]], [[Turki]], [[Selandia Baru]], [[Yunani]], Italia, [[India]], [[Nepal]], dan [[Jepang]].<ref>{{cite web |url=https://earthquake.usgs.gov/ |title=Earthquake Hazards Program |publisher=United States Geological Survey |access-date=2006-08-14 |archive-date=2011-05-13 |archive-url=https://web.archive.org/web/20110513032733/https://sslearthquake.usgs.gov/ens/ |dead-url=no }}</ref><ref>[http://www.australiangeographic.com.au/journal/the-10-biggest-earthquakes-in-recorded-history.htm/ The 10 biggest earthquakes in history] {{Webarchive|url=https://web.archive.org/web/20130930084024/http://www.australiangeographic.com.au/journal/the-10-biggest-earthquakes-in-recorded-history.htm/ |date=2013-09-30 }}, Australian Geographic, March 14, 2011.</ref>
 
Gempa bumi berkekuatan besar jarang terjadi dan hubungannya bersifat eksponensial; misalnya, gempa bumi yang lebih besar dari magnitudo 4 terjadi sepuluh kali lebih banyak dibandingkan gempa yang lebih besar dari magnitudo 5. Di [[Britania Raya]] (wilayah seismik terendah di [[Eropa]]), telah dihitung bahwa rata-rata kejadiannya adalah: gempa bumi berkekuatan 3,7–4,6 setiap tahun, gempa bumi berkekuatan 4,7–5,5 setiap 10 tahun, dan gempa bumi berkekuatan 5,6 atau lebih besar setiap 100 tahun.<ref>{{cite web |url=http://www.quakes.bgs.ac.uk/hazard/Hazard_UK.htm |title=Seismicity and earthquake hazard in the UK |publisher=Quakes.bgs.ac.uk |access-date=2010-08-23 |archive-date=2010-11-06 |archive-url=https://web.archive.org/web/20101106121058/http://quakes.bgs.ac.uk/hazard/Hazard_UK.htm |url-status=live }}</ref>
 
Jumlah stasiun seismik telah meningkat dari sekitar 350 pada tahun 1931 menjadi ribuan saat ini. Akibatnya, lebih banyak gempa bumi yang dilaporkan dibandingkan di masa lalu, namun hal ini disebabkan oleh kemajuan pesat dalam instrumentasi, dibandingkan peningkatan jumlah gempa bumi. [[Survei Geologi Amerika Serikat]] (USGS) memperkirakan bahwa, sejak tahun 1900, telah terjadi rata-rata 18 gempa bumi besar (berkekuatan 7,0–7,9) dan satu gempa besar (berkekuatan 8,0 atau lebih besar) per tahun, dan rata-rata ini relatif stabil.
 
[[File:Pacific Ring of Fire.svg|thumb|240px|[[Cincin Api Pasifik]]. Zona seismik dan letusan gunung berapi terbesar didunia]]
[[Berkas:Alpiner Gebirgsgürtel.png|thumb|240px|[[Sabuk alpide|Zona Sabuk alpida]]. Zona seismik paling aktif kedua didunia]]
 
Sebagian besar gempa bumi di dunia 90%, terjadi di zona sepanjang 40.000 kilometer (25.000 mil), yang dikenal sebagai [[Cincin Api Pasifik]]. Sekitar 90% dari gempa bumi yang terjadi dan 81% dari gempa bumi terbesar terjadi di sepanjang Cincin Api ini.
 
Gempa besar juga cenderung terjadi di sepanjang batas lempeng lainnya, seperti di sepanjang [[Pegunungan Himalaya]] yang dikenal sebagai [[Sabuk alpide|Zona sabuk alpida]], zona seisimik paling aktif kedua setelah Cincin api di Pasifik.<ref>
{{cite web
|title = Historic Earthquakes and Earthquake Statistics: Where do earthquakes occur?
|url = https://earthquake.usgs.gov/learning/faq.php?categoryID=11&faqID=95
|publisher = United States Geological Survey
|access-date = 2006-08-14
|url-status = dead
|archive-url = https://web.archive.org/web/20060925142008/http://earthquake.usgs.gov/learning/faq.php?categoryID=11&faqID=95
|archive-date = 2006-09-25
}}</ref> Zona seismik [[Sabuk alpida]] mempunyai reputasi sebagai pembunuh. Meskipun hanya sekitar 17% gempa bumi besar di dunia terjadi di sabuk seismik Alpida, sebagian besar korban jiwa akibat gempa bumi sepanjang sejarah terjadi di zona ini. Hal ini terutama disebabkan oleh konstruksi yang lemah dan banyaknya jumlah penduduk di wilayah tersebut. Beberapa gempa bumi mematikan di daerah ini termasuk [[Gempa bumi Asia Selatan 2005]] yang membunuh sekitar 87.000 jiwa, lalu [[Gempa bumi Bam 2003]] di Tenggara [[Iran]] menewaskan sekitar 34.000 orang, dan gempa bumi baru baru ini yaitu [[Gempa bumi Turki–Suriah 2023]] membunuh sekitar 50.000 jiwa.<ref>{{cite web|title=All about the Alpide Belt that makes Turkey a hotbed for devastating earthquakes|trans-title=Semua tentang Sabuk Alpida yang menjadikan Turki sarang gempa bumi dahsyat|url=https://theprint.in/world/all-about-the-alpide-belt-that-makes-turkey-a-hotbed-for-devastating-earthquakes/1357347/|language=en|website=theprint.in|access-date=7 Mei 2024}}</ref>
 
[[Berkas:Skyscrapers of Shinjuku 2009 January.jpg|thumb|240px|[[Tokyo]] menjadi kota paling rawan gempa di dunia. Para ahli mengatakan, ada kemungkinan 70 persen gempa besar berkekuatan 7.0 melanda wilayah selatan [[Tokyo]] dalam 30 tahun ke depan.]]
 
Kota-kota besar seperti [[Mexico City]], [[Tokyo]], [[Jakarta]], [[Manila]], [[Los Angeles]], [[San Francisco]], [[Roma]], [[Istanbul]], [[Bucharest]], [[Delhi]] dan [[Teheran]] memiliki resiko gempa bumi yang sangat tinggi, dengan kerusakan dan jumlah korban yang tak terbatas. Beberapa seismolog memperingatkan bahwa satu gempa bumi saja dapat merenggut nyawa sekitar tiga juta orang, meskipun peristiwa semacam itu belum pernah terjadi dalam catatan sejarah.<ref>{{cite web|title=The 12 Most Earthquake Vulnerable Cities In The World|trans-title=12 Kota Paling Rentan Gempa bumi Di Dunia|url=https://www.worldatlas.com/natural-disasters/the-12-most-earthquake-vulnerable-cities-in-the-world.html|website=World Atlas|access-date=24 Januari 2024|language=en}}</ref><ref>"[http://cires.colorado.edu/~bilham/UrbanEarthquakesGlobal.html Global urban seismic risk] {{Webarchive|url=https://web.archive.org/web/20110920015358/http://cires.colorado.edu/~bilham/UrbanEarthquakesGlobal.html |date=2011-09-20 }}." Cooperative Institute for Research in Environmental Science.</ref>
 
== Dampak gempa bumi ==
=== Guncangan dan pergerakan tanah ===
{{Main|Percepatan tanah puncak}}
[[File:MexCity85quake.jpg|thumb|240px|Struktur bangunan delapan lantai yang fondasinya hancur, setelah diguncang [[Gempa bumi Kota Meksiko 1985]]]]
[[File:Tremor(English).gif|thumb|240px|Animasi perbandingan guncangan gempa antara [[Gempa bumi Kota Meksiko 1985]] dan [[Gempa bumi Puebla 2017]]]]
Guncangan tanah adalah dampak utama yang ditimbulkan oleh gempa bumi. Tingkat keparahan dampak lokal bergantung pada kombinasi kompleks besaran gempa, jarak dari pusat gempa, serta kondisi geologi dan geomorfologi setempat, yang dapat memperkuat atau mengurangi perambatan gelombang. Guncangan tanah diukur dengan [[percepatan tanah puncak]].
 
Efek ini disebut amplifikasi. Hal ini terutama disebabkan oleh perpindahan gerakan seismik dari tanah dalam yang keras ke tanah dangkal yang lunak dan efek fokus energi seismik yang disebabkan oleh susunan geometris khas dari endapan tersebut.
 
Guncangan tanah adalah risiko berbahaya bagi struktur teknik bangunan besar seperti [[bendungan]], [[jembatan]], dan [[pembangkit listrik tenaga nuklir]] yang dapat merusak struktur tersebut.
 
=== Pencairan tanah ===
{{Artikel|Pencairan tanah}}
[[File:Petobo portrait after Sulawesi earthquake 2.jpg|thumb|240px|Dampak Pencairan tanah di Balaroa, [[Palu (kota)|Palu]], setelah [[Gempa bumi dan tsunami Sulawesi 2018]]]]
 
[[Pencairan tanah]] atau Likeufaksi terjadi ketika, karena goncangan, material butiran jenuh air (seperti pasir) untuk sementara kehilangan kekuatannya dan berubah dari padat menjadi cair. Likuifaksi tanah dapat menyebabkan struktur kaku, seperti bangunan dan jembatan, miring atau tenggelam ke dalam endapan cair. Misalnya, pada [[Gempa bumi Alaska 1964|Gempa bumi Alaska tahun 1964]], pencairan tanah menyebabkan banyak bangunan tenggelam ke dalam tanah, dan akhirnya runtuh dengan sendirinya.<ref>{{cite web|url=https://earthquake.usgs.gov/regional/states/events/1964_03_28.php |title=Historic Earthquakes – 1964 Anchorage Earthquake |publisher=United States Geological Survey |access-date=2008-09-15 |url-status=dead |archive-url=https://web.archive.org/web/20110623111831/http://earthquake.usgs.gov/regional/states/events/1964_03_28.php |archive-date=2011-06-23 }}</ref>
 
=== Tanah Longsor ===
{{Artikel|Tanah Longsor}}
[[File:ElSalvadorslide.jpg|thumb|220px|Tanah longsor akibat [[Gempa bumi El Salvador 2001]]]]
Gempa bumi seringkali memicu terjadinya [[tanah longsor]], sehingga menyebabkan kerusakan parah dan bahkan bencana pada rumah-rumah. Jika rumah Anda berada di jalur longsor akibat gempa, maka bangunan disek8 berisiko mengalami kerusakan akibat puing-puing tanah longsor, serta tergelincir ke bawah bukit.
 
Setiap jenis tanah longsor yang disebabkan oleh gempa bumi terjadi pada lingkungan geologi tertentu. Mulai dari lereng yang menjorok dari batuan yang terindurasi dengan baik hingga lereng dengan kemiringan kurang dari 1° yang didasari oleh sedimen lunak dan tidak terkonsolidasi. Material yang paling rentan terhadap tanah longsor akibat gempa bumi meliputi batuan dengan sementasi lemah, batuan dengan indurasi lebih tinggi dengan diskontinuitas yang menonjol atau pervasif, pasir sisa dan koluvial, tanah vulkanik yang mengandung lempung sensitif, tanah loess, tanah tersementasi, alluvium granular, endapan delta granular, dan man-granular. dibuat terisi.
 
=== Kebakaran ===
[[File:Sfearthquake3b.jpg|thumb|240px|Kebakaran saat [[Gempa bumi San Francisco 1906]].]]
Gempa bumi juga dapat menyebabkan [[kebakaran]] dengan merusak saluran listrik atau saluran pipa gas. Misalnya, pada [[Gempa bumi San Francisco 1906]] lebih banyak korban jiwa yang disebabkan oleh api daripada gempa itu sendiri.<ref>{{cite web|url=https://earthquake.usgs.gov/regional/nca/1906/18april/index.php|title=The Great 1906 San Francisco earthquake of 1906|publisher=United States Geological Survey|access-date=2008-09-15|archive-date=2017-02-11|archive-url=https://web.archive.org/web/20170211170826/https://earthquake.usgs.gov/regional/nca/1906/18april/index.php|url-status=dead}}</ref>
 
=== Tsunami ===
{{Artikel|Tsunami}}
[[File:2004-tsunami.jpg|thumb|240px|Tsunami saat [[Gempa bumi dan tsunami Samudra Hindia 2004|Gempa bumi di Samudra Hindia]].]]
Tsunami adalah gelombang laut dengan panjang gelombang dan periode panjang yang dihasilkan oleh pergerakan air dalam jumlah besar secara tiba-tiba atau tiba-tiba—termasuk saat terjadi gempa bumi di bawah laut. Di lautan terbuka, jarak antara puncak gelombang dapat melebihi 100 kilometer (62 mil), dan periode gelombang dapat bervariasi dari lima menit hingga satu jam. Tsunami semacam itu bergerak dengan kecepatan 600–800 kilometer per jam (373–497 mil per jam), bergantung pada kedalaman air. Gelombang besar yang dihasilkan oleh gempa bumi atau tanah longsor bawah laut dapat menyerbu daerah pesisir terdekat dalam hitungan menit. Tsunami juga dapat menempuh jarak ribuan kilometer melintasi lautan terbuka dan mendatangkan kehancuran di pantai seberang beberapa jam setelah gempa bumi yang menimbulkannya.
 
Biasanya, gempa subduksi di bawah magnitudo 7,5 tidak menyebabkan tsunami, meskipun beberapa kejadiannya telah tercatat. Sebagian besar tsunami yang merusak disebabkan oleh gempa bumi berkekuatan 7,5 atau lebih.
 
=== Banjir ===
{{Artikel|Banjir}}
Banjir mungkin efek sekunder dari gempa bumi jika [[bendungan]] rusak. Gempa bumi dapat menyebabkan tanah longsor membendung sungai, runtuh dan menyebabkan banjir.
 
===Dampak pada Manusia===
[[File:USMC-06155.jpg|thumb|240px|Korban terluka di [[Sewon, Bantul]] akibat [[Gempa bumi Yogyakarta 2006]]]]
 
Dampak fisik akibat gempa bumi termasuk: Cedera dan kehilangan nyawa.<ref>{{Cite web |title=The wicked problem of earthquake hazard in developing countries |url=https://www.preventionweb.net/news/wicked-problem-earthquake-hazard-developing-countries |access-date=2022-11-03 |website=www.preventionweb.net |date=7 March 2018 |language=en |archive-date=2022-11-03 |archive-url=https://web.archive.org/web/20221103025507/https://www.preventionweb.net/news/wicked-problem-earthquake-hazard-developing-countries |url-status=live }}</ref>
 
Selain itu, masyarakat yang terkena dampak gempa cenderung terpengaruh secara psikologis, seperti gangguan mental dan perilaku yang secara langsung menimbulkan rasa takut atau menyebabkan [[gangguan stres pascatrauma]] (PTSD). Dilaporkan bahwa antara 10 dan 40% para penyintas bencana gempa bumi mengalami depresi, dan sulit tidur karena gangguan kecemasan.
 
Para penyintas gempa mengalami dampak kecemasan, adalah sesuatu yang wajar saat mengalami gempa pertama, apalagi gempa besar.
 
Diketahui bahwa gejala PTSD, depresi, dan kecemasan merupakan gangguan mental yang banyak terjadi pada remaja Indonesia pasca gempa.
 
Orang-orang dapat mengalami pusing, kecemasan, dan bahkan "[[gempa susulan]] hantu”. Gempa bumi selalu menakutkan, namun bagi sebagian orang, gempa susulan dapat terjadi lebih dari sekedar gempa yang sebenarnya: Orang dapat mengalami kecemasan, masalah tidur, dan masalah kesehatan lainnya dalam hitungan jam atau hari setelah gempa.<ref>{{cite web|title=Survivors of Deadly Earthquakes Must Deal with Lasting Trauma|trans-title=Korban Gempa Mematikan Harus Menghadapi Trauma Abadi|url=https://www.scientificamerican.com/article/survivors-of-deadly-earthquakes-must-deal-with-lasting-trauma/|language=en|website=Scientificamericab.com|access-date=5 Mei 2024}}</ref>
 
== Prediksi ==
[[File:Kinemetrics seismograph.jpg|thumb|250px|Sebuah [[Seismometer]] alat pengukur skala gempa bumi]]
{{Lihat|Gempa bumi Haicheng 1975}}
Prediksi gempa adalah cabang ilmu seismologi yang berkaitan dengan spesifikasi waktu, lokasi, dan berapa besarnya gempa bumi di masa depan. Banyak metode yang telah dikembangkan untuk memprediksi kapan gempa bumi akan terjadi, dalam waktu, dan tempat yang ditentukan. Meskipun banyak upaya yang dilakukan, hingga saat ini gempa bumi belum dapat diprediksi pada hari atau bulan tertentu.
 
Pada tahun 1970-an, para ilmuwan optimis bahwa metode untuk memprediksi gempa bumi akan segera ditemukan, tetapi pada tahun 1990-an kegagalan terus berlanjut, dan membuat banyak pihak mempertanyakan apakah hal semacam itu bisa dilakukan. Sebagian besar ilmuwan pesimis dan berpendapat bahwa, memprediksi gempa bumi pada dasarnya adalah hal mustahil untuk dilakukan.
 
[[Gempa bumi Haicheng 1975]] diklaim satu satunya yang berhasil diprediksi oleh seismologi, sehingga angka korban jiwa berhasil ditekan, sebagian besar kota telah dievakuasi sebelum gempa, dan hanya sedikit korban yang meninggal akibat runtuhnya bangunan.<ref>{{Harvtxt|Whitham|Berry|Heidebrecht|Kanasewich|1976|p=266}} provide a brief report. {{Harvtxt|Raleigh|Bennett|Craig|Hanks|1977}} has a fuller account. {{Harvtxt|Wang|Chen|Sun|Wang|2006|p=779}}, after careful examination of the records, set the death toll at 2,041.</ref>
 
== Sistem peringatan gempa ==
[[File:Early Earthquake Warning Systems Map.png|thumb|250px|- Negara yang memiliki sistem peringatan dini gempa bumi (''warna merah'')<br>- Negara yang dalam masa pengembangan peringatan dini gempa bumi (''warna kuning'')]]
Pada tahun 2023, [[Tiongkok]], [[Jepang]], [[Taiwan]], [[Korea Selatan]], dan [[Meksiko]] memiliki sistem peringatan dini gempa bumi nasional yang akurat dan komprehensif.
 
===Meksiko===
[[File:Receptor del Sistema de Alerta Sísmica para la Ciudad de México.JPG|thumb|200px|SASMEX Sistem peringatan dini gempa bumi di [[Mexico City]]]]
Negara yang mempunyai penerapan sistem peringatan dini gempa bumi, termasuk Meksiko (Sistem Peringatan Seismik Meksiko) atau disebut SASMEX. Sistem peringatan ini memberikan peringatan gempa bumi hingga 60 detik ke [[Mexico City]], [[Acapulco]], [[Kota Puebla]], [[Oaxaca]], [[Guadalajara]], [[Colima]] dan [[Toluca]]. SASMEX dibuat setelah peristiwa mematikan [[Gempa bumi Kota Meksiko 1985]], dalam rangka langkah-langkah kesiapsiagaan darurat.
 
Jaringan sensor SASMEX yang melayani [[Kota Meksiko]] telah dianggap sebagai sistem peringatan dini gempa pertama yang mengeluarkan peringatan dan tersedia untuk masyarakat umum.<ref>{{cite web|url=http://www.preventionweb.net/files/workspace/7935_suarezandgarciaacosta.pdf|work=UNISDR Scientific and Technical Advisory Group|first1=Gerardo|last1=Suárez|first2=Virginia|last2=García Acosta|title=The seismic alert system in Mexico City: an example of a successful Early Warning System (EWS)|date=2014|accessdate=28 July 2017|url-status=live|archiveurl=https://web.archive.org/web/20151002030032/http://www.preventionweb.net/files/workspace/7935_suarezandgarciaacosta.pdf|archivedate=2 October 2015}}</ref>
 
===Amerika Serikat===
[[File:ShakeAlert.jpg|thumb|240px|ShakeAlert di [[California]]]]
Di [[Amerika Serikat]]. Sistem pra-deteksi gempa bumi otomatis paling awal dipasang pada tahun 1990an; misalnya, di [[California]], sistem stasiun pemadam kebakaran Calistoga yang secara otomatis memicu sirene seluruh kota untuk memperingatkan seluruh penduduk di wilayah tersebut akan adanya gempa bumi.<ref>{{cite web|url=http://members.napanet.net/~chderham/siren.htm|title=Calistoga to get an earful of nation's first quake siren|first=Pamela|last=Podger|publisher=napanet|date=July 2001|access-date=2012-10-28|archive-url=https://web.archive.org/web/20140223054531/http://members.napanet.net/~chderham/siren.htm|archive-date=2014-02-23|url-status=dead}}</ref>
 
[[Badan Survei Geologi Amerika Serikat]] (USGS) memulai penelitian dan pengembangan sistem peringatan dini di Pantai Barat Amerika Serikat pada bulan Agustus 2006, dan sistem tersebut mulai dapat dibuktikan pada bulan Agustus 2009. Setelah melalui berbagai fase pengembangan, versi 2.0 diluncurkan pada musim gugur tahun 2018, memungkinkan sistem yang "cukup berfungsi dan teruji" untuk memulai Fase 1 untuk memperingatkan [[California]], [[Oregon]], dan [[Washington]].
 
ShakeAlert memperingatkan masyarakat mulai tanggal 28 September 2018, pesan-pesan itu sendiri tidak dapat didistribusikan sampai berbagai mitra distribusi swasta dan publik menyelesaikan aplikasi seluler dan melakukan perubahan pada berbagai sistem peringatan darurat. Sistem peringatan pertama yang tersedia untuk umum adalah aplikasi ShakeAlertLA, yang dirilis pada Malam Tahun Baru 2018 (walaupun hanya memperingatkan adanya guncangan di wilayah [[Los Angeles]]). Pada 17 Oktober 2019, Cal OES mengumumkan peluncuran sistem distribusi peringatan di seluruh negara bagian di California, menggunakan aplikasi seluler dan sistem Peringatan Darurat Nirkabel (WEA). California menyebut sistem mereka sebagai Sistem Peringatan Dini Gempa California. Sistem ini peringatan diluncurkan di [[Oregon]] pada 11 Maret 2021 dan di [[Washington]] pada 4 Mei 2021, melengkapi sistem peringatan untuk Pantai Barat.<ref>{{cite news |last=Snibbe |first=Kurt |date=2019-10-15 |title=California's earthquake early warning system is now statewide |trans-title=Sistem peringatan dini gempa California kini diterapkan di seluruh negara bagian |url=https://www.mercurynews.com/2019/10/15/what-you-should-and-should-not-do-during-an-earthquake/ |work=Mercury News |language=en |access-date=2019-12-31}}</ref>
 
===Jepang===
[[File:Earthquake Early Warning (Japan)-en.png|thumb|230px|Mekanisme sistem peringatan dini gempa bumi di Jepang]]
[[File:Earthquake-Early-Warning-on-Smartphone 02.jpg|thumb|230px|Sistem Peringatan Gempa (EEW) pada Ponsel di Jepang]]
[[File:Emergency broadcast in Uenohara city 211105.opus|thumb|230px|Suara dari sistem peringatan (EEW) pada Ponsel]]
Di [[Jepang]] sistem peringatan dini gempa bumi, dibuat oleh [[Badan Meteorologi Jepang]], sistem peringatan tersebut bernama (EEW) '''''Earthquake Early Warning'''''. Sistem ini menggunakan [[gelombang seismik]]. Sistem tersebut akan diperingati melalui ponsel seluler, saluran televisi, dan radio, beberapa detik atau menit sebelum gempa bumi mengguncang.<ref>Sankei-MSN News (2011-05-01 21:55) "The Earthquake Early Warning – the chime contained the tone of pains, even examined the 'Godzilla'" {{cite web|url=http://sankei.jp.msn.com/affairs/news/110501/dst11050121570027-n1.htm|script-title=ja:緊急地震速報…チャイムに苦心の音色 「ゴジラ」の検討も|date=2011-05-01|publisher=[[MSN]]|access-date=2011-06-26|url-status=dead |archive-url=https://web.archive.org/web/20110713125134/http://sankei.jp.msn.com/affairs/news/110501/dst11050121570027-n1.htm|archive-date=13 July 2011|language=ja}}</ref>
 
Sistem ini dikembangkan untuk meminimalkan kerusakan akibat gempa dan memungkinkan masyarakat untuk berlindung atau mengevakuasi daerah berbahaya sebelum datangnya guncangan yang kuat. Sistem ini digunakan oleh kereta api untuk memperlambat kereta dan oleh pabrik untuk menghentikan jalur perakitan sebelum gempa terjadi.
 
Efektivitas peringatan tergantung pada posisi penerimanya. Setelah menerima peringatan, seseorang memiliki waktu beberapa detik hingga satu menit atau lebih untuk mengambil tindakan. Daerah dekat pusat gempa mungkin akan mengalami guncangan hebat sebelum peringatan dikeluarkan.<ref name="JMA-outline(en)">{{cite news|url=http://www.jma.go.jp/jma/en/Activities/eew1.html|title=What is the Earthquake Early Warning (or "緊急地震速報 (Kinkyu Jishin Sokuho)" in Japanese)?|date=2007-08-30|access-date=2008-06-29|publisher=Japan Meteorological Agency}}</ref>
 
Setelah [[Gempa bumi dan tsunami Tōhoku 2011]], sistem (EEW) dan sistem peringatan tsunami Jepang dianggap efektif. Meskipun tsunami menewaskan lebih dari 20.000 orang, dan diyakini bahwa jumlah korban jiwa akan jauh lebih besar tanpa sistem peringatan (EEW).
 
===Tiongkok===
[[File:国家烈预工程监测台站图.png|thumb|250px|Sistem peringatan gempa Tiongkok (EEWS), 150.000 stasiun pemantauan dipasang]]
Sistem peringatan gempa di [[Tiongkok]] dibangun pada tahun 1990an. Kehancuran akibat [[Gempa bumi Sichuan 2008]] mendorong investasi Tiongkok dalam sistem peringatan dini gempa bumi nasional (EEWS). Sejumlah stasiun pemantauan, sensor, dan sistem analitik dipasang untuk meningkatkan akurasi, daya tanggap, dan kelengkapan data gempa. Pada bulan Juni 2019, sistem peringatan gempa nasional (EEWS), berhasil memperingatkan sebuah kota akan terjadinya gempa berkekuatan 6,0 {{M|w|link=y}} antara 10-27 detik sebelum guncangan tiba.
 
Pada tahun 2023, (EEWS) nasional telah selesai dibangun, dengan 150.000 stasiun pemantauan, dikelola oleh tiga pusat nasional, 31 pusat provinsi, 173 pusat prefektur dan kota. Sistem peringatan dini gempa Tiongkok adalah jaringan seismik terbesar di dunia.<ref name="ie_2306">{{cite web |url=https://interestingengineering.com/innovation/china-worlds-largest-earthquake-early-warning-system |title=China is building the world’s largest earthquake early warning system|trans-title=Tiongkok sedang membangun sistem peringatan dini gempa bumi terbesar di dunia|website=Interesting Engineering|language=en |date=10 Juni 2023 |first=Sejal |last=Sharma }}</ref>
 
===Indonesia===
Di [[Indonesia]], sistem peringatan dini gempa bumi saat ini dalam masa pengembangan, sistem tersebut bernama (EWAS) ''Earthquake Early Warning System'', sistem pendeteksi guncangan ini difungsikan untuk memberikan tanda peringatan kehadiran gempa bumi kepada masyarakat secara otomatis dan sangat cepat. Sistem ini diharapkan dapat meningkatkan rasa aman sekaligus kewaspadaan masyarakat di daerah-daerah rawan bencana gempa bumi yang makin sering terjadi.
 
(EWAS) memberi tanda peringatan gempa bumi berupa bunyi sirine yang keras di tengah masyarakat tepat saat guncangan gempa terjadi. EWAS efektif mendeteksi guncangan gempa dan membunyikan alarm peringatan dalam waktu kurang dari 5 detik. Tidak harus menunggu pesan SMS atau whatsapp yang baru mengabarkan gempa 5 menit setelah gempa terjadi.
 
Ketika alarm EWAS berbunyi, sudah pasti itu akibat gempa, bukan karena truk melintas atau karena adanya perkerjaan renovasi/konstruksi bangunan. Masyarakat tidak perlu ragu, segera bergegas keluar bangunan menuju tempat yang lapang, agar terhindar dari bahaya terkena runtuhan bangunan.
 
Sistem EWAS dibangun dari sejumlah detektor getaran tanah (node) yang dipasang di suatu lingkungan pemukiman, misalnya suatu desa atau kelurahan; atau gedung apartemen, gedung perkantoran, kawasan industri hingga daerah wisata pantai dan pegunungan serta tempat wisata lainnya yang ramai pengunjungnya. Setiap node saling berkomunikasi melalui gelombang radio. Sehingga jarak antar node tergantung dari jangkauan komunikasi radio antar node. Sejauh ini Sistem EWAS yang sudah terpasang jarak antar nodenya sekitar 200-300 meter.<ref>{{cite web|title=Earthquake Early Warning System di Indonesia|url=https://geosciences.ui.ac.id/earthquake-warning-alert-system-ewas/|website=Geoscience.ui.ac.id|access-date=22 April 2024}}</ref>
 
===Sistem Global===
====Detektor Gempa====
[[File:Network-globe-icon 512 wave.png|thumb|200px|Logo dari [[:en:Earthquake Network|Detektor Gempa]] dari Francesco Finazzi, kini dapat di install melalui aplikasi Android]]
[[File:Earthquake Network spatial distribution.jpg|thumb|270px|Pengguna aplikasi Detektor Gempa "Earthquake Network"]]
Pada bulan Januari 2013, Francesco Finazzi dari [[Universitas Bergamo]] memulai proyek penelitian Jaringan Gempa yang bertujuan untuk mengembangkan dan memelihara sistem peringatan gempa crowdsourced berdasarkan jaringan ponsel pintar. Ponsel pintar digunakan untuk mendeteksi guncangan tanah yang disebabkan oleh gempa bumi dan peringatan dikeluarkan segera setelah gempa terdeteksi. Masyarakat yang tinggal pada jarak yang lebih jauh dari pusat gempa dan titik deteksi mungkin akan diperingatkan sebelum mereka terkena gelombang gempa yang merusak.
 
Masyarakat dapat mengambil bagian dalam proyek ini dengan menginstal aplikasi [[Android]] "Earthquake Network" di ponsel pintar mereka. Aplikasi ini mengharuskan ponsel untuk menerima peringatan.<ref name="finazzifasso">{{cite journal|last1=Finazzi|first1=Francesco |last2=Fassò|first2=Alessandro |year=2016|journal=Stochastic Environmental Research and Risk Assessment|volume=31 |issue=7 |pages=1649–1658 |title=A statistical approach to crowdsourced smartphone-based earthquake early warning systems|doi=10.1007/s00477-016-1240-8 |arxiv=1512.01026|s2cid=123910895 }}</ref><ref name="finazzi">{{cite journal|last1=Finazzi|first1=Francesco|year=2016|journal=Bulletin of the Seismological Society of America|volume=106|issue=3|pages=1088–1099|title=The Earthquake Network Project: Toward a Crowdsourced Smartphone‐Based Earthquake Early Warning System|access-date=10 June 2016|doi=10.1785/0120150354|url=http://www.bssaonline.org/content/106/3/1088.full|arxiv=1512.01026|bibcode=2016BuSSA.106.1088F|s2cid=88515799}}{{Dead link|date=February 2024 |bot=InternetArchiveBot |fix-attempted=yes }}</ref>
 
"Earthquake Network" atau '''''"Detektor Gempa"''''' kini dapat di install dalam aplikasi [[Play Store]] untuk seluruh pengguna global.
 
====Sistem Peringatan Gempa Android====
Pada 11 Agustus 2020, [[Google]] mengumumkan bahwa sistem operasi Android-nya akan mulai menggunakan akselerometer di perangkat untuk mendeteksi gempa bumi (dan mengirimkan datanya ke "peladen pendeteksi gempa" perusahaan). Karena jutaan ponsel beroperasi pada Android, dan menghasilkan jaringan pendeteksi gempa terbesar di dunia.
 
Data yang dikumpulkan oleh perangkat Android hanya digunakan untuk memberikan informasi cepat mengenai gempa bumi melalui Google Penelusuran, meskipun perangkat tersebut selalu direncanakan untuk mengeluarkan peringatan untuk banyak area lain berdasarkan kemampuan deteksi Google di masa mendatang.
 
Pada tanggal 28 April 2021, Google mengumumkan peluncuran sistem peringatan ke [[Yunani]] dan [[Selandia Baru]], negara pertama yang menerima peringatan berdasarkan kemampuan deteksi Google sendiri. Peringatan Google diperluas ke [[Turki]], [[Filipina]], [[Kazakhstan]], [[Kyrgyzstan]], [[Tajikistan]], [[Turkmenistan]], dan [[Uzbekistan]] pada bulan Juni 2021.<ref>{{cite web |url=https://blog.google/products/android/introducing-android-earthquake-alerts-outside-us/ |title=Introducing Android Earthquake Alerts outside the U.S. |last=Spooner |first=Boone |date=April 28, 2021 |website=Google blog |publisher=Google |access-date=May 6, 2021}}</ref>
 
== Penanggulangan ==
[[File:Earthquake Kit in Japan 2008.jpg|thumb|240px|Perlengkapan tas siaga gempa di Jepang]]
===Mitigasi===
Persiapan untuk menghadapi gempa bumi dapat terdiri dari tindakan mitigasi, yang berupaya meminimalisir dampak gempa bumi. Tindakan bertahan hidup yang umum mencakup seperti menyimpan makanan kaleng, senter, alat [[P3K]], dan air untuk keadaan darurat, hingga memberikan panduan kepada masyarakat apa yang harus dilakukan saat gempa terjadi.<ref>{{cite web|url=http://www2.gov.bc.ca/gov/content/safety/emergency-preparedness-response-recovery/preparedbc/know-the-risks/earthquakes|title=Earthquakes - Province of British Columbia|access-date=2016-08-24|archive-date=2019-04-04|archive-url=https://web.archive.org/web/20190404155036/https://www2.gov.bc.ca/gov/content/safety/emergency-preparedness-response-recovery/preparedbc/know-the-risks/earthquakes|url-status=dead}}</ref>
 
[[File:09.21 9時21分警報響起,現場師生立即就地尋找掩蔽 (37172112026).jpg|thumb|240px|Sebuah latihan mitigasi gempa bumi yang diadakan oleh sekolah di [[Taiwan]]]]
Langkah-langkah mitigasi dapat mencakup mengamankan benda yang kuat, dan jauh dari tempat tidur, seperti perabot berukuran besar (contoh rak buku, lemari besar, layar TV dan komputer) yang mungkin terjatuh saat terjadi gempa bumi. Lalu menghindari menyimpan barang di atas tempat tidur atau sofa, dan menghindari tempat tidur berada di atas sebuah jendela, demi menghindari resiko terkena puing-puing pecahan kaca saat gempa terjadi. Lalu menyimpan benda-benda tajam seperti pisau dengan baik di lemari.
 
Kesiapsiagaan dimulai dari kehidupan sehari-hari seseorang dan melibatkan benda-benda serta pelatihan yang berguna saat terjadi gempa bumi. Kesiapsiagaan berlanjut dalam sebuah kontinum dari kesiapan individu hingga kesiapan anggota keluarga, saat menghadapi bencana gempa bumi.
 
[[File:0134jfNationwide Simultaneous Earthquake Drill Philippinesfvf 15.jpg|thumb|240px|Latihan mitigasi bencana gempa di [[Filipina]]]]
Beberapa negara dengan resiko bencana gempa bumi tinggi seperti [[Indonesia]].<ref>{{cite web|title=Jakarta Intensifkan Mitigasi Gempa Bumi|url=https://www.kompas.id/baca/metro/2024/05/29/jakarta-intensifkan-mitigasi-gempa-bumi|website=[[Kompas.id]]|access-date=3 Agustus 2024}}</ref> Kesiapsiagaan masyarakat umumnya masih rendah, terutama dalam lingkungan sekolah dan pekerjaan, meskipun ada upaya untuk meningkatkan kesadaran masyarakat.<ref>{{cite journal |last1=Joffe |first1=H. |last2=Rossetto |first2=T. |last3=Solberg |first3=C. |last4=O'Connor |first4=C. |title=Social Representations of Earthquakes: A Study of People Living in Three Highly Seismic Areas |journal=Earthquake Spectra |date=2013 |volume=29 |issue=2 |pages=367–397 |doi=10.1193/1.4000138|bibcode=2013EarSp..29..367J |s2cid=53648708 |url=http://eprints.maynoothuniversity.ie/6783/1/COC-Social-Representations.pdf }}</ref>
 
Banyak berbagai metode untuk meningkatkan kesiapsiagaan bencana, namun metode tersebut jarang terdokumentasi dengan baik dan efektivitasnya jarang diuji. Pelatihan langsung, latihan, dan interaksi tatap muka terbukti lebih berhasil dalam mengubah perilaku.<ref>{{cite web|title=Pakar UGM Ungkap Fakta Pentingnya Mitigasi Bencana Gempa di Indonesia|url=https://www.liputan6.com/amp/5505089/pakar-ugm-ungkap-fakta-pentingnya-mitigasi-bencana-gempa-di-indonesia|website=[[Liputan 6]]|access-date=3 Agustus 2024}}</ref>
 
===Struktur tahan gempa===
[[File:Pole 3 building seismic base isolator.jpg|thumb|240px|Isolator anti seismik pada bangunan]]
Struktur tahan gempa atau struktur aseismik dirancang untuk melindungi bangunan pada tingkat tertentu atau lebih besar dari gempa bumi. Meskipun tidak ada struktur yang sepenuhnya tahan terhadap kerusakan akibat gempa, tujuan dari rekayasa gempa adalah untuk mendirikan struktur yang berfungsi lebih baik selama aktivitas seismik dibandingkan struktur konvensional.
 
Menurut peraturan bangunan, struktur tahan gempa dimaksudkan untuk menahan gempa bumi terbesar dengan kemungkinan tertentu yang mungkin terjadi di lokasinya. Ini berarti korban jiwa harus diminimalkan dengan mencegah runtuhnya bangunan jika terjadi gempa bumi yang jarang terjadi, sementara hilangnya fungsi harus dibatasi pada gempa yang lebih sering terjadi.
 
{{Multiple image
|align = left
|direction = vertical
|width = 200
|image1 = Taipei 101 Tuned Mass Damper 2010.jpg
|caption1 =
|image2 = Taipei 101 Tuned Mass Damper.png
|caption2 = Sebuah [[Bandul]] seberat 800 ton pada menara [[Taipei 101]], mampu menahan efek guncangan gempa bumi
}}
Untuk mengurangi kehancuran akibat gempa, satu-satunya metode yang tersedia bagi para arsitek kuno adalah membangun bangunan bersejarah mereka agar tahan lama, sering kali dengan membuatnya terlalu kaku dan kuat.<ref name=Reitherman>{{cite book|last=Reitherman|first=Robert|title=Earthquakes and Engineers: An International History|year=2012|publisher=ASCE Press|location=Reston, VA|isbn=9780784410714|pages=356–357|url=http://www.asce.org/Product.aspx?id=2147487208&productid=154097877|url-status=dead|archive-url=https://web.archive.org/web/20120726183407/http://www.asce.org/Product.aspx?id=2147487208&productid=154097877|archive-date=2012-07-26}}</ref>
 
Bangunan anti seismik di daerah rawan gempa mungkin memiliki persyaratan khusus yang dirancang untuk meningkatkan ketahanan bangunan baru terhadap gempa. Bangunan tua dan rumah yang tidak memenuhi standar dapat dimodifikasi untuk meningkatkan ketahanannya. Modifikasi dan desain tahan gempa juga diterapkan pada [[jalan layang]] dan [[jembatan]].
 
Teknik modifikasi gempa dan peraturan bangunan modern dirancang untuk mencegah kehancuran total bangunan akibat gempa bumi yang tidak lebih besar dari 8,5 [[Skala Richter]].<ref name="SFGate">{{Cite news|url = http://www.il-st-acad-sci.org/kingdom/geo1001.html|title = What San Francisco didn't learn from the '06 quake|access-date = 20 June 2011|last = Smith|first = Charles|date = 2006-04-15|work = [[San Francisco Chronicle]]|archive-date = 2009-10-26|archive-url = https://web.archive.org/web/20091026124131/http://www.il-st-acad-sci.org/kingdom/geo1001.html|url-status = dead}}</ref>
 
== Zona Gempa ==
[[File:EQs 1900-2015 china.png|thumb|240px|Gempa bumi M 4.5+ dari (1900–2015). Bintang kuning adalah episentrum [[Gempa bumi Sichuan 2008]]]]
Terdapat dua zona atau sirkum gempa besar, keduanya bertempat di pertemuan antara dua lempeng tektonik.
Zona Pertama, yang juga disebut [[Cincin Api Pasifik]] atau Pacifik Ring Of Fire, terletak di sekitar Samudera Pasifik, Melintasi Benua [[Asia]] bagian Timur, [[Benua Amerika]] bagian barat dan [[Pulau Papua]] di [[Benua Australia]]. Melintasi Amerika serikat. Sebagian besar wilayah San Fransisco pada tahun 1906, juga hancur akibat gempa yang melanda pada zona tersebut. bahkan negara Indonesia juga termasuk dalam dua zona seperti [[Cincin Api Pasifik]] dan [[Sabuk alpida]] yang terkena dampak gempanya.<ref>{{Cite book|date=2008|title=Ensiklopedia Pengetahuan Populer|location=Jakarta|publisher=Lentera|isbn=978-979-3535-28-9|pages=143|url-status=live}}</ref>
Zona Kedua melewati Selatan [[Eurasia]] (Ini tidak termasuk kawasan Asia dari [[Gondwana]] seperti Semenanjung Arab dan Anak Benua India) dan terus ke arah [[Laut Tengah]] sampai ke [[Pegunungan atlas]] di [[Afrika Utara]].
 
== Gempa bumi pada abad ke-21 ==
{{Lihat pula|Daftar gempa bumi terkuat sepanjang sejarah}}
* <small>'''Note''': Berikut ini adalah daftar gempa bumi mematikan dari tahun 2000–Sekarang; <br> '''Setidaknya >1,000 korban jiwa'''</small>
 
{|class="wikitable sortable"
|-
!Rank
! scope="col" | Tanggal
! scope="col" | Lokasi
! scope="col" | Artikel
! scope="col" | Korban
! scope="col" | Magnitudo
|-
! 1
| {{dts|2010-01-12}}
| {{bendera|Haiti}}, [[Port-au-prince]]
| [[Gempa bumi Haiti 2010]]
| 220,000–316,000
| 7.0
|-
! 2
| {{dts|2004-12-26}}
| {{bendera|Indonesia}}, [[Sumatra]], [[Samudra Hindia]]
| [[Gempa bumi dan tsunami Samudra Hindia 2004]]
| 227,898
| 9.1–9.3
|-
! 3
| {{dts|2008-05-12}}
| {{bendera|Tiongkok}}, [[Sichuan]]
| [[Gempa bumi Sichuan 2008]]
| 87,587
| 7.9
|-
! 4
| {{dts|2005-10-08}}
| {{bendera|Pakistan}}<br>{{bendera|India}}, [[Kashmir]]
| [[Gempa bumi Asia Selatan 2005]]
| 87,351
| 7.6
|-
! 5
| {{dts|2023-02-06}}
| {{bendera|Turki}}<br>{{bendera|Suriah}}, [[Gaziantep]]
| [[Gempa bumi Turki–Suriah 2023]]
| 62,013
| 7.8
|-
! 6
| {{dts|2003-12-26}}
| {{bendera|Iran}}, [[Kerman]]
| [[Gempa bumi Bam 2003]]
| 34,000
| 6.6
|-
! 7
| {{dts|2001-01-26}}
| {{bendera|India}}, [[Gujarat]]
| [[Gempa bumi Gujarat 2001]]
| 20,026
| 7.7
|-
! 8
| {{dts|2011-03-11}}
| {{bendera|Jepang}}, [[Tōhoku]]
| [[Gempa bumi dan tsunami Tōhoku 2011]]
| 19,759
| 9.0–9.1
|-
! 9
| {{dts|2015-04-25}}
| {{bendera|Nepal}}
| [[Gempa bumi Nepal April 2015]]
| 8,964
| 7.8
|-
! 10
| {{dts|2006-05-27}}
| {{bendera|Indonesia}}, [[Yogyakarta]]
| [[Gempa bumi Yogyakarta 2006]]
| 5,778
| 6.4
|-
! 11
| {{dts|2018-09-28}}
| {{bendera|Indonesia}}, [[Sulawesi Tengah]]
| [[Gempa bumi dan tsunami Sulawesi 2018]]
| 4,340
| 7.5
|-
! 12
| {{dts|2023-09-08}}
| {{bendera|Maroko}}, [[Marrakesh-Safi]]
| [[Gempa bumi Maroko 2023]]
| 2,960
| 6.8
|-
! 13
| {{dts|2010-04-13}}
| {{bendera|Tiongkok}}, [[Qinghai]]
| [[Gempa bumi Yushu 2010]]
| 2,698
| 6.9
|-
! 14
| {{dts|2003-05-21}}
| {{bendera|Aljazair}}, [[Algiers]]
| [[Gempa bumi Boumerdes 2003]]
| 2,226
| 6.8
|-
! 15
| {{dts|2021-08-14}}
| {{bendera|Haiti}}, [[Les Cayes]]
| [[Gempa bumi Haiti 2021]]
| 2,248
| 7.2
|-
! 16
| {{dts|2023-10-07}}
| {{bendera|Afghanistan}}, [[Herat]]
| [[Gempa bumi Herat 2023]]
| 1,482
| 6.3
|-
! 17
| {{dts|2005-03-28}}
| {{bendera|Indonesia}}, [[Sumatra]]
| [[Gempa bumi Sumatra 2005]]
| 1,314
| 8.6
|-
! 18
| {{dts|2022-06-21}}
| {{bendera|Afghanistan}}
| [[Gempa bumi Asia Selatan 2022]]
| 1,163
| 6.0
|-
! 19
| {{dts|2009-09-30}}
| {{bendera|Indonesia}}, [[Sumatera Barat]]
| [[Gempa bumi Sumatra Barat 2009]]
| 1,115
| 7.6
|}
 
== Dalam budaya ==
=== Pandangan sejarah ===
[[File:Illustration from Views in the Ottoman Dominions by Luigi Mayer, digitally enhanced by rawpixel-com 29.jpg|thumb|240px|Sebuah ilustrasi [[:en:1783 Calabrian earthquakes|Gempa bumi di Calabria, Italia]] tahun 1783]]
 
Sejak masa filsuf Yunani [[Anaxagoras]] pada abad ke-5 SM hingga abad ke-14 M, gempa bumi biasanya dikaitkan dengan "udara (uap) di rongga-rongga bumi". [[Thales]] dari Miletus (625–547 SM) adalah satu-satunya orang yang terdokumentasi dan percaya bahwa gempa bumi disebabkan oleh ketegangan antara bumi dan air.<ref name=World>{{cite encyclopedia
|title=Earthquakes
|encyclopedia=Encyclopedia of World Environmental History
|volume=1: A–G
|pages=358–364
|publisher=Routledge
|year=2003 }}</ref> Ada teori lain, termasuk keyakinan filsuf Yunani Anaxamines (585–526 SM) bahwa tanah yang kering dan basah dapat menyebabkan aktivitas seismik. Filsuf Yunani [[Democritus]] (460–371 SM) menyalahkan air sebagai penyebab utama gempa bumi. [[Plinius Tua]] menyebut bahwa gempa bumi sebagai sebuah "badai petir bawah tanah".
 
=== Mitologi dan agama ===
Dalam [[Mitologi Nordik]], gempa bumi dijelaskan sebagai perjuangan keras dewa [[Loki]]. Ketika Loki, dewa kejahatan dan perselisihan, membunuh Baldr, dewa keindahan dan cahaya, dia dihukum dengan diikat di sebuah gua dengan ular berbisa ditempatkan di atas kepalanya yang meneteskan racun. Istri Loki, Sigyn, berdiri di sampingnya dengan mangkuk untuk menangkap racun, tetapi setiap kali dia harus mengosongkan mangkuk, racun itu menetes ke wajah Loki, memaksanya untuk menyentakkan kepalanya dan meronta-ronta ke ikatannya, yang menyebabkan bumi bergetar.
 
Dalam [[mitologi Yunani]], [[Poseidon]] adalah penyebab dan dewa gempa bumi. Ketika suasana hatinya sedang buruk, dia menghantam tanah dengan trisula, menyebabkan gempa bumi dan bencana lainnya. Dia juga menggunakan gempa bumi untuk menghukum dan menakuti orang-orang sebagai balas dendam.<ref name="Dimock1990">{{cite book|author=George E. Dimock|title=The Unity of the Odyssey|url=https://books.google.com/books?id=hS1acr-lOeEC&pg=PA179|year=1990|publisher=Univ of Massachusetts Press|isbn=978-0-87023-721-8|pages=179–}}</ref>
 
Dalam [[mitologi Jepang]], [[Ōnamazu]] adalah ikan lele raksasa yang menyebabkan gempa bumi. Ōnamazu tinggal di lumpur di bawah bumi dan dijaga oleh dewa Kashima yang menahan ikan dengan batu. Saat Kashima lengah, ōnamazu meronta-ronta, dan menyebabkan gempa bumi yang dahsyat.<ref>{{Cite encyclopedia|url=http://www.worldhistory.org/Namazu/|title=Namazu|encyclopedia=World History Encyclopedia|access-date=2017-07-23|archive-date=2021-04-23|archive-url=https://web.archive.org/web/20210423164505/https://www.worldhistory.org/Namazu/|dead-url=no}}</ref>
 
=== Budaya Populer ===
[[File:Valdivia after earthquake, 1960.jpg|thumb|240px|[[Gempa bumi Valdivia 1960]]. Gempa terbesar yang pernah tercatat]]
Dalam budaya populer modern, penggambaran gempa bumi dibentuk oleh kenangan kota-kota besar yang hancur oleh gempa, seperti yang terjadi pada [[Gempa bumi besar Hanshin|Gempa bumi Kobe tahun 1995]], [[Gempa bumi San Francisco 1906]] atau [[Gempa bumi Kota Meksiko 1985]].
 
====Film dan televisi====
Beberapa [[film fiktif]] populer yang menggambarkan kehancuran gempa bumi pada suatu kota, dan di masa mendatang, yang diperkirakan akan terjadi di [[Patahan San Andreas]] California suatu hari nanti. Beberapa [[film bencana]] terpopuler diantaranya;
* ''[[2012 (film)|2012]]'' (2009) - Film fiktif bencana Amerika Serikat
* ''[[Aftershock (film)|Aftershock]]'' (2010) - Film drama Tiongkok, terinpirasi dari peristiwa [[Gempa bumi Tangshan 1976]].
* ''[[Hafalan Shalat Delisa]]'' (2011) - Film drama Indonesia, terinpirasi dari bencana [[Gempa bumi dan tsunami Samudra Hindia 2004|Gempa bumi dan tsunami Aceh tahun 2004]]
* ''[[San Andreas (film)|San Andreas]]'' (2015) - Film bencana Amerika Serikat, berdasarkan gempa bumi pada [[Patahan San Andreas]]
* ''[[Earthquake (film 2016)|Earthquake]]'' (2016) - Film drama Rusia-Armenia berdasarkan peristiwa [[Gempa bumi Spitak 1988|Gempa bumi Armenia 1988]]
* ''[[Suzume]]'' (2022) - Film petualangan fantasi animasi Jepang, berdasarkan peristiwa [[Gempa bumi dan tsunami Tōhoku 2011]]
 
== Lihat pula ==
* [[Badan Meteorologi Klimatologi dan Geofisika]]
* [[Skala intensitas Mercalli yang dimodifikasi]]
* [[Percepatan tanah puncak]]
* [[Daftar gempa bumi di Indonesia]]
* [[Tsunami#Daftar tsunami di Indonesia|Daftar tsunami di Indonesia]]
* [[Gempa (fenomena alam)]]
* [[Cahaya gempa]] - Cahaya gempa saat gempa bumi terjadi di malam hari
* [[Gempa mars]]
 
== Referensi ==
{{reflist}}
 
== Pranala luar ==
* {{id}} [http://www.bmkg.go.id/BMKG_Pusat/Geofisika/terkini.bmkg Badan Meteorologi, Klimatologi, dan Geofisika] {{Webarchive|url=https://web.archive.org/web/20230415044311/https://www.bmkg.go.id/BMKG_Pusat/Geofisika/terkini.bmkg |date=2023-04-15 }}
* {{en}} [http://earthquake.usgs.gov/ Situs web Gempabumi USGS] {{Webarchive|url=https://web.archive.org/web/20151211172659/http://earthquake.usgs.gov/ |date=2015-12-11 }}
* {{en}} [http://www.emsc-csem.org/ European-Mediterranean Seismological Center] {{Webarchive|url=https://web.archive.org/web/20080819195049/http://www.emsc-csem.org/ |date=2008-08-19 }}, Situs web informasi waktu tepat gempa Bumi.
 
{{Navbox gempa bumi}}
{{Rekayasa geoteknik}}
{{Authority control}}
 
[[Kategori:Seismologi]]
[[Kategori:Bencana alam]]