Prometium: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Thijs!bot (bicara | kontrib)
InternetArchiveBot (bicara | kontrib)
Rescuing 1 sources and tagging 0 as dead.) #IABot (v2.0.9.5
 
(69 revisi perantara oleh 37 pengguna tidak ditampilkan)
Baris 1:
{{Other uses}}
{{Elementbox_header | number=61 | symbol=Pm | name=prometium | left=[[neodimium]] | right=[[samarium]] | above=- | below=[[neptunium|Np]] | color1=#ffbfff | color2=black }}
{{Kotak info prometium}}
{{Elementbox_series | [[lantanida]] }}
'''Prometium''' adalah sebuah [[unsur kimia]] dengan [[Lambang unsur|lambang]] '''Pm''' dan [[nomor atom]] 61. Semua [[isotop]]nya bersifat [[peluruhan radioaktif|radioaktif]]; ia sangatlah langka, dengan hanya sekitar 500–600 gram yang terjadi secara alami di kerak bumi pada setiap waktu tertentu. Prometium adalah salah satu dari dua unsur radioaktif yang dalam [[tabel periodik]] diikuti oleh unsur-unsur stabil, yang lainnya adalah [[teknesium]]. Secara kimiawi, prometium adalah [[lantanida]]. Prometium hanya menunjukkan satu [[Bilangan oksidasi|keadaan oksidasi]] stabil, yaitu +3.
{{Elementbox_periodblock | period=6 | block=f }}
{{Elementbox_appearance | metallic }}
{{Elementbox_atomicmass_gpm | [[1 E-25 kg|[145]]][[List of elements by atomic mass|(0)]] }}
{{Elementbox_econfig | &#91;[[xenon|Xe]]&#93; 4f<sup>5</sup> 6s<sup>2</sup> }}
{{Elementbox_epershell | 2, 8, 18, 23, 8, 2 }}
{{Elementbox_section_physicalprop | color1=#ffbfff | color2=black }}
{{Elementbox_phase | [[solid]] }}
{{Elementbox_density_gpcm3nrt | 7.26 }}
{{Elementbox_meltingpoint | k=1315 | c=1042 | f=1908 }}
{{Elementbox_boilingpoint | k=3273 | c=3000 | f=5432 }}
{{Elementbox_heatfusion_kjpmol | 7.13 }}
{{Elementbox_heatvaporiz_kjpmol | 289 }}
{{Elementbox_section_atomicprop | color1=#ffbfff | color2=black }}
{{Elementbox_crystalstruct | hexagonal }}
{{Elementbox_oxistates | 3<br />(mildly [[base (chemistry)|basic]] oxide) }}
{{Elementbox_electroneg_pauling | ? 1.13 }}
{{Elementbox_ionizationenergies4 | 540 | 1050 | 2150 }}
{{Elementbox_atomicradius_pm | [[1 E-10 m|185]] }}
{{Elementbox_atomicradiuscalc_pm | [[1 E-10 m|205]] }}
{{Elementbox_section_miscellaneous | color1=#ffbfff | color2=black }}
{{Elementbox_magnetic | no data }}
{{Elementbox_eresist_ohmm | ([[room temperature|r.t.]]) est. 0.75 µ}}
{{Elementbox_thermalcond_wpmkat300k | 17.9 }}
{{Elementbox_thermalexpansion_umpmk | ([[room temperature|r.t.]]) (α, poly)<br />est. 11 }}
{{Elementbox_youngsmodulus_gpa | (α form) est. 46 }}
{{Elementbox_shearmodulus_gpa | (α form) est. 18 }}
{{Elementbox_bulkmodulus_gpa | (α form) est. 33 }}
{{Elementbox_poissonratio | (α form) est. 0.28 }}
{{Elementbox_cas_number | 7440-12-2 }}
{{Elementbox_isotopes_begin | color1=#ffbfff | color2=black }}
{{Elementbox_isotopes_decay | mn=145 | sym=Pm
| na=[[synthetic radioisotope|syn]] | hl=17.7 [[year|y]]
| dm=[[Electron capture|ε]] | de=0.163 | pn=145 | ps=[[neodymium|Nd]] }}
{{Elementbox_isotopes_decay2 | mn=146 | sym=Pm
| na=[[synthetic radioisotope|syn]] | hl=5.53 y
| dm1=ε | de1=1.472 | pn1=146 | ps1=[[neodymium|Nd]]
| dm2=[[Beta minus decay|β<sup>-</sup>]] | de2=1.542 | pn2=146 | ps2=[[samarium|Sm]] }}
{{Elementbox_isotopes_decay | mn=147 | sym=Pm
| na=[[synthetic radioisotope|syn]] | hl=2.6234 [[year|y]]
| dm=[[beta emission|β<sup>-</sup>]] | de=0.224 | pn=147 | ps=[[samarium|Sm]] }}
{{Elementbox_isotopes_end}}
{{Elementbox_footer | color1=#ffbfff | color2=black }}
 
Pada tahun 1902, [[Bohuslav Brauner]] memperkirakan bahwa ada unsur yang tidak dikenal pada waktu itu dengan sifat-sifat perantara antara unsur-unsur yang telah diketahui, [[neodimium]] (60) dan [[samarium]] (62); hal ini dikonfirmasi oleh [[Henry Moseley]] pada tahun 1914, yang, setelah mengukur nomor atom semua unsur yang diketahui saat itu, menemukan bahwa nomor atom 61 hilang. Pada tahun 1926, dua kelompok (satu Italia dan satu Amerika) mengklaim telah mengisolasi sampel unsur 61; kedua "penemuan" itu segera terbukti salah. Pada tahun 1938, selama percobaan nuklir yang dilakukan di [[Universitas Negeri Ohio]], beberapa nuklida radioaktif dihasilkan yang pastinya bukan radioisotop neodimium atau samarium, tetapi tidak ada bukti kimia bahwa unsur 61 dihasilkan, dan penemuan itu tidak diakui secara umum. Prometium pertama kali diproduksi dan dicirikan di [[Laboratorium Nasional Oak Ridge]] pada tahun 1945 melalui pemisahan dan analisis produk fisi bahan bakar uranium yang diiradiasi dalam reaktor grafit. Para penemu mengusulkan nama "prometheum" (ejaannya kemudian diubah), yang berasal dari [[Prometheus (mitologi)|Prometheus]], Titan dalam mitologi Yunani yang mencuri api dari Gunung Olympus dan membawanya ke manusia, untuk melambangkan "keberanian dan kemungkinan penyalahgunaan kecerdasan umat manusia". Namun, sampel logam tersebut baru dibuat pada tahun 1963.
'''Prometium''' adalah suatu [[unsur kimia]] dalam [[tabel periodik]] yang memiliki lambang '''Pm''' dan [[nomor atom]] 61.
 
Dua sumber prometium alami adalah [[peluruhan alfa]] yang langka dari [[europium]]-151 alami (menghasilkan prometium-147) dan [[pembelahan spontan|fisi spontan]] [[uranium]] (berbagai isotop). Prometium-145 adalah isotop prometium yang paling stabil, tetapi satu-satunya isotop dengan aplikasi praktis adalah prometium-147, senyawa kimia yang digunakan dalam [[cat bercahaya]], [[baterai atom]], dan alat pengukur ketebalan. Karena prometium alami sangat langka, prometium biasanya disintesis dengan membombardir uranium-235 ([[uranium yang diperkaya]]) dengan [[Suhu neutron#Termal|neutron termal]] untuk menghasilkan prometium-147 sebagai [[produk pembelahan atom|produk fisi]].
==Sifat==
===Sifat fisik===
Sebuah atom prometium memiliki 61 elektron, tersusun dalam [[konfigurasi elektron|konfigurasi]] &#91;[[xenon|Xe]]&#93;&nbsp;4f<sup>5</sup>&nbsp;6s<sup>2</sup>. Tujuh elektron 4f dan 6s adalah [[elektron valensi|valensi]].<ref name="Cotton">{{Greenwood&Earnshaw|page=1233}}</ref> Dalam membentuk senyawa, atom prometium kehilangan dua elektron terluarnya dan salah satu elektron 4f, yang termasuk dalam subkulit terbuka. Jari-jari atom unsur tersebut adalah yang terbesar kedua di antara semua lantanida tetapi hanya sedikit lebih besar dari unsur-unsur tetangganya.<ref name="Cotton" /> Ini adalah pengecualian yang paling menonjol untuk tren umum kontraksi atom lantanida dengan peningkatan nomor atomnya (lihat [[kontraksi lantanida]]<ref>{{Cotton&Wilkinson5th|pages=776, 955}}</ref>). Banyak sifat prometium bergantung pada posisinya di antara lantanida dan merupakan perantara antara neodimium dan samarium. Misalnya, titik lebur, tiga energi ionisasi pertama, dan energi hidrasinya lebih besar dari neodimium dan lebih rendah dari samarium;<ref name="Cotton" /> sama halnya, perkiraan titik didih, jari-jari ionik (Pm<sup>3+</sup>), dan panas pembentukan standar gas monoatomik lebih besar daripada samarium dan lebih kecil daripada neodimium.<ref name="Cotton" />
 
Prometium memiliki struktur [[Tetal-rapat sferis sama|padat heksagon ganda]] (''double hexagonal close packed'', dhcp) dan kekerasan 63&nbsp;kg/mm<sup>2</sup>.<ref name="str" /> Bentuk alfa bersuhu rendah ini berubah menjadi fase beta, [[Sistem kristal kubik|kubus berpusat badan]] (''body-centered cubic'', bcc) saat dipanaskan hingga 890&nbsp;°C.<ref name="CRCrare" />
{{clr}}
===Sifat kimia dan senyawa===
Prometium berada dalam lantanida [[Logam tanah jarang#Klasifikasi awal|golongan serium]] dan secara kimiawi sangat mirip dengan unsur-unsur tetangganya.{{sfn|Lavrukhina|Pozdnyakov|1966|p=120}} Karena ketidakstabilannya, studi kimia prometium masih belum lengkap. Meskipun beberapa senyawanya telah disintesis, mereka tidak sepenuhnya dipelajari; umumnya warnanya cenderung pink atau merah.{{sfn|Emsley|2011|p=429}}<ref name="brit">[http://www.britannica.com/EBchecked/topic/478714/promethium promethium]. Encyclopædia Britannica Online</ref> Perlakuan larutan asam yang mengandung ion {{chem2|Pm(3+)}} dengan [[amonia]] menghasilkan endapan hidroksida berwarna coklat muda seperti agar-agar, {{chem2|Pm(OH)3}}, yang tidak larut dalam air.{{sfn|Lavrukhina|Pozdnyakov|1966|p=121}} Ketika dilarutkan dalam asam klorida, maka akan dihasilkan garam kuning yang larut dalam air, {{chem2|PmCl3}};{{sfn|Lavrukhina|Pozdnyakov|1966|p=121}} demikian pula, ketika dilarutkan dalam asam nitrat, maka akan dihasilkan nitrat, {{chem2|Pm(NO3)3}}. Yang terakhir juga larut dengan baik; saat dikeringkan, ia akan membentuk kristal berwarna merah muda, mirip dengan {{chem2|Nd(NO3)3}}.{{sfn|Lavrukhina|Pozdnyakov|1966|p=121}} Konfigurasi elektron untuk {{chem2|Pm(3+)}} adalah [Xe] 4f<sup>4</sup>, dan warna ionnya merah muda. Lambang istilah keadaan dasarnya adalah <sup>5</sup>I<sub>4</sub>.<ref>{{cite book|title=Chemistry of the f-block elements| author=Aspinall, H. C.|year= 2001| page=34, Table 2.1|publisher=Gordon & Breach|isbn=978-9056993337}}</ref> Prometium sulfat sedikit larut, seperti sulfat kelompok serium lainnya. Parameter sel telah dihitung untuk oktahidratnya; mereka menyimpulkan bahwa massa jenis {{chem2|Pm2(SO4)3*8H2O}} adalah 2,86&nbsp;g/cm<sup>3</sup>.{{sfn|Lavrukhina|Pozdnyakov|1966|p=122}} Prometium oksalat, {{chem2|Pm2(C2O4)3*10H2O}}, memiliki kelarutan terendah dari semua oksalat lantanida.{{sfn|Lavrukhina|Pozdnyakov|1966|p=123}}
 
Berbeda dengan nitratnya [[Prometium(III) oksida|oksida]]nya mirip dengan garam samarium yang sesuai dan bukan garam neodimium. Saat disintesis, misalnya dengan memanaskan oksalat, ia adalah bubuk berwarna putih atau lavender dengan struktur yang tidak teratur.{{sfn|Lavrukhina|Pozdnyakov|1966|p=121}} Serbuk ini mengkristal dalam kisi kubik saat dipanaskan hingga 600&nbsp;°C. Penganilan lebih lanjut pada 800&nbsp;°C dan kemudian pada 1750&nbsp;°C mengubahnya secara ireversibel menjadi fase [[Sistem kristal monoklinik|monoklinik]] dan [[Keluarga kristal heksagon|heksagonal]], dan dua fase terakhir dapat saling dipertukarkan dengan menyesuaikan waktu dan suhu penganilan.<ref name="PmO" />
 
{| Class = "wikitable" style = "text-align: center"
! Rumus
! simetri
! [[grup ruang]]
! No
! [[Simbol Pearson|lambang Pearson]]
! ''a'' (pm)
! ''b'' (pm)
! ''c'' (pm)
! ''Z''
! densitas, <br/>g/cm<sup>3</sup>
|-
| α-Pm
| [[Tetal-rapat sferis sama|dhcp]]<ref name="str">{{cite journal|doi=10.1016/0022-5088(71)90101-9|title=The crystal structure of promethium|year=1971|last1=Pallmer|first1=P. G.|last2=Chikalla|first2=T. D.|journal=Journal of the Less Common Metals|volume=24|issue=3|pages=233}}</ref><ref name="CRCrare">{{cite book |editor=Lide, D. R. |author=Gschneidner Jr., K.A. |chapter=Physical Properties of the rare earth metals |title=CRC Handbook of Chemistry and Physics |edition=86 |location=Boca Raton, FL |publisher=CRC Press |year=2005 |isbn=978-0-8493-0486-6 |chapter-url=http://203.158.253.140/media/e-Book/Engineer/Chemistry/Handbook%20of%20Chemistry%20and%20Physics/Section%2004/04_03_86.pdf |access-date=3 Juni 2023 |archive-url=https://www.webcitation.org/6AlZkPuDd?url=http://203.158.253.140/media/e-Book/Engineer/Chemistry/Handbook%20of%20Chemistry%20and%20Physics/Section%2004/04_03_86.pdf |archive-date=18 September 2012 |url-status=dead }}</ref>
| P6<sub>3</sub>/mmc
| 194
| hP4
| 365
| 365
| 1165
| 4
| 7,26
|-
| β-Pm
| [[Sistem kristal kubik|bcc]]<ref name="CRCrare" />
| Fm{{overline|3}}m
| 225
| cF4
| 410
| 410
| 410
| 4
| 6,99
|-
| Pm<sub>2</sub>O<sub>3</sub>
| kubik<ref name="PmO" />
| Ia{{overline|3}}
| 206
| cI80
| 1099
| 1099
| 1099
| 16
| 6,77
|-
| Pm<sub>2</sub>O<sub>3</sub>
| monoklinik<ref name="PmO">{{cite journal|doi=10.1111/j.1151-2916.1972.tb11329.x|title=Polymorphic Modifications of Pm2O3|year=1972|last1=Chikalla|first1=T. D.|last2=McNeilly|first2=C. E.|last3=Roberts|first3=F. P.|journal=Journal of the American Ceramic Society|volume=55|issue=8|pages=428}}</ref>
| C2/m
| 12
| mS30
| 1422
| 365
| 891
| 6
| 7,40
|-
| Pm<sub>2</sub>O<sub>3</sub>
| heksagonal<ref name="PmO" />
| P{{overline|3}}m1
| 164
| hP5
| 380,2
| 380,2
| 595,4
| 1
| 7,53
|}
 
Prometium hanya membentuk satu keadaan oksidasi stabil, +3, dalam bentuk ion; ini sejalan dengan lantanida lainnya. Menurut posisinya dalam [[tabel periodik]], unsur ini tidak dapat diharapkan untuk membentuk keadaan oksidasi +4 atau +2 yang stabil; memperlakukan senyawa kimia yang mengandung ion Pm<sup>3+</sup> dengan zat pengoksidasi atau pereduksi kuat menunjukkan bahwa ion tersebut tidak mudah teroksidasi atau tereduksi.{{sfn|Lavrukhina|Pozdnyakov|1966|p=120}}
 
{| Class = "wikitable" style = "text-align: center"
|+Halida prometium<ref>{{cite book|author=Cotton, Simon|title=Lanthanide And Actinide Chemistry|url=https://books.google.com/books?id=SvAbtU6XvzgC&pg=PA117|year= 2006|publisher=John Wiley & Sons|isbn=978-0-470-01006-8|page=117}}</ref>
! Rumus
! warna
! bilangan<br/>koordinasi
! simetri
! [[grup ruang]]
! No
! [[Simbol Pearson|lambang Pearson]]
! [[Titik lebur|t.l.]] (°C)
|-
|PmF<sub>3</sub>
|Ungu-pink
|11
|heksagonal
|P{{overline|3}}c1
|165
|hP24
|1338
|-
|PmCl<sub>3</sub>
|Lavender
|9
|heksagonal
|P6<sub>3</sub>/mc
|176
|hP8
|655
|-
|PmBr<sub>3</sub>
|Merah
|8
|ortorombik
|Cmcm
|63
|oS16
|624
|-
|α-PmI<sub>3</sub>
|Merah
|8
|ortorombik
|Cmcm
|63
|oS16
|α→β
|-
|β-PmI<sub>3</sub>
|Merah
|6
|rombohedral
|R{{overline|3}}
|148
|hR24
|695
|}
===Isotop===
{{Utama|Isotop prometium}}
Prometium adalah satu-satunya [[lantanida]] dan salah satu dari dua unsur di antara 82 unsur pertama yang tidak memiliki isotop stabil atau berumur panjang ([[nuklida primordial|primordial]]). Ini adalah hasil dari [[Isotop teknesium#Stabilitas isotop teknesium|efek yang jarang terjadi]] dari [[Rumus massa semi-empiris#Model tetesan cair|model tetesan cair]] dan stabilitas isotop unsur tetangga; ia juga merupakan unsur yang paling tidak stabil di antara 84 unsur pertama.{{NUBASE2020|ref}} Produk peluruhan utamanya adalah isotop [[neodimium]] dan [[samarium]] (prometium-146 meluruh menjadi keduanya, isotop yang lebih ringan umumnya menjadi neodimium melalui [[emisi positron|peluruhan positron]] dan [[tangkapan elektron]], dan isotop yang lebih berat menjadi samarium melalui [[peluruhan beta]]). [[Isomer nuklir]] prometium dapat meluruh menjadi isotop prometium lain dan satu isotop (<sup>145</sup>Pm) memiliki mode peluruhan alfa yang sangat jarang menjadi [[praseodimium]]-141 yang stabil.{{NUBASE2020|ref}}
 
Isotop prometium yang paling stabil adalah prometium-145, yang memiliki aktivitas spesifik {{convert|940|Ci/g|TBq/g|abbr=on|lk=on}} dan waktu paruh 17,7&nbsp;tahun melalui tangkapan elektron.{{NUBASE2020|ref}}<ref name="CRCel" /> Karena isotop ini memiliki 84 neutron (dua lebih dari 82, yang merupakan [[bilangan ajaib (fisika nuklir)|bilangan ajaib]] yang sesuai dengan konfigurasi neutron yang stabil), ia dapat memancarkan [[partikel alfa]] (yang memiliki 2 neutron) untuk membentuk praseodimium-141 dengan 82 neutron. Jadi, ia adalah satu-satunya isotop prometium dengan [[peluruhan alfa]] yang teramati secara eksperimental.{{sfn|Lavrukhina|Pozdnyakov|1966|p=114}} [[Peluruhan eksponensial#Peluruhan melalui dua atau lebih proses|Waktu paruh parsialnya]] untuk peluruhan alfa adalah sekitar 6,3{{e|9}}&nbsp;tahun, dan probabilitas relatif inti <sup>145</sup>Pm untuk meluruh dengan cara ini adalah 2,8{{e|-7}}&nbsp;%. Beberapa isotop prometium lainnya seperti <sup>144</sup>Pm, <sup>146</sup>Pm, dan <sup>147</sup>Pm juga memiliki pelepasan energi positif untuk peluruhan alfa; peluruhan alfa mereka diperkirakan terjadi tetapi belum teramati. Secara total, 41 isotop prometium telah diketahui, mulai dari <sup>126</sup>Pm hingga <sup>166</sup>Pm.{{NUBASE2020|ref}}<ref name=Ln922>{{cite journal |last1=Kiss |first1=G. G. |last2=Vitéz-Sveiczer |first2=A. |last3=Saito |first3=Y. |display-authors=et al. |title=Measuring the β-decay properties of neutron-rich exotic Pm, Sm, Eu, and Gd isotopes to constrain the nucleosynthesis yields in the rare-earth region |journal=The Astrophysical Journal |volume=936 |issue=107 |date=2022 |page=107 |doi=10.3847/1538-4357/ac80fc|bibcode=2022ApJ...936..107K |s2cid=252108123 }}</ref>
 
Unsur ini juga memiliki 18 isomer nuklir, dengan [[nomor massa]] 133 sampai 142, 144, 148, 149, 152, dan 154 (beberapa nomor massa memiliki lebih dari satu isomer). Yang paling stabil adalah prometium-148m, dengan waktu paruh 43,1&nbsp;hari; ini lebih panjang dari waktu paruh keadaan dasar dari semua isotop prometium, kecuali untuk prometium-143 hingga 147. Faktanya, prometium-148m memiliki waktu paruh yang lebih lama daripada [[keadaan dasar]]nya, prometium-148.{{NUBASE2020|ref}}
==Keterjadian==
[[Berkas:Pitchblende schlema-alberoda.JPG|left|thumb|[[Uraninit]], bijih uranium dan inang bagi sebagian besar prometium yang ada di Bumi]]
Pada tahun 1934, [[Willard F. Libby|Willard Libby]] melaporkan bahwa ia telah menemukan aktivitas beta yang lemah dalam neodimium murni, yang dikaitkan dengan waktu paruh selama 10<sup>12</sup>&nbsp;years.{{sfn|Lavrukhina|Pozdnyakov|1966|p=117}} Hampir 20 tahun kemudian, diklaim bahwa unsur tersebut terdapat dalam neodimium alami dalam kesetimbangan dalam jumlah di bawah 10<sup>−20</sup> gram prometium per satu gram neodimium.{{sfn|Lavrukhina|Pozdnyakov|1966|p=117}} Namun, pengamatan ini dibantah oleh penyelidikan yang lebih baru, karena untuk ketujuh isotop neodimium alami, setiap peluruhan beta tunggal (yang dapat menghasilkan isotop prometium) dilarang oleh kekekalan energi.<ref>{{cite journal |author1=G. Audi |author2=A. H. Wapstra |author3=C. Thibault |author4=J. Blachot |author5=O. Bersillon |year=2003 |title=The NUBASE evaluation of nuclear and decay properties |url=http://www.nndc.bnl.gov/amdc/nubase/Nubase2003.pdf |journal=[[Nuclear Physics A]] |volume=729 |issue=1 |pages=3–128 |doi=10.1016/j.nuclphysa.2003.11.001 |bibcode=2003NuPhA.729....3A |url-status=dead |archive-url=https://web.archive.org/web/20080923135135/http://www.nndc.bnl.gov/amdc/nubase/Nubase2003.pdf |archive-date=23 September 2008 |citeseerx=10.1.1.692.8504 }}</ref> Secara khusus, pengukuran massa atom yang cermat menunjukkan bahwa perbedaan massa <sup>150</sup>Nd−<sup>150</sup>Pm adalah negatif (−87&nbsp;keV), yang benar-benar mencegah peluruhan beta tunggal dari <sup>150</sup>Nd menjadi <sup>150</sup>Pm.<ref>{{cite book |author=N. E. Holden |year=2004 |editor=D. R. Lide |chapter=Table of the Isotopes |title=CRC Handbook of Chemistry and Physics |page=[https://archive.org/details/crchandbookofche81lide/page/ Section 11] |no-pp=yes |edition=85 |publisher=[[CRC Press]] |isbn=978-0-8493-0485-9 |title-link=CRC Handbook of Chemistry and Physics }}</ref>
 
Pada tahun 1965, [[Olavi Erämetsä]] memisahkan jejak <sup>145</sup>Pm dari konsentrat tanah jarang yang dimurnikan dari [[apatit]], menghasilkan batas atas 10<sup>−21</sup> untuk kelimpahan prometium di alam; ini mungkin dihasilkan oleh fisi nuklir alami uranium, atau oleh [[spalasi sinar kosmik]] <sup>146</sup>Nd.<ref>{{Ullmann|volume=31|page=188|last1=McGill|first1=Ian|contribution=Rare Earth Elements|doi=10.1002/14356007.a22_607}}</ref>
 
Kedua isotop europium alami memiliki [[surplus massa]] yang lebih besar daripada jumlah surplus potensial produk peluruhan alfa ditambah surplus partikel alfa; oleh karena itu, mereka (dalam praktiknya stabil) dapat mengalami peluruhan alfa menjadi prometium.<ref name="Mammamia" /> Penelitian di [[Laboratori Nazionali del Gran Sasso]] menunjukkan bahwa europium-151 meluruh menjadi prometium-147 dengan waktu paruh 5{{e|18}}&nbsp;years.<ref name="Mammamia" /> Telah ditunjukkan bahwa europium "bertanggung jawab" atas sekitar 12&nbsp;gram prometium di [[kerak Bumi]].<ref name="Mammamia" /> Peluruhan alfa untuk europium-153 belum ditemukan, dan waktu paruhnya yang dihitung secara teoretis sangatlah tinggi (karena energi peluruhan yang rendah) sehingga proses ini mungkin tidak akan diamati dalam waktu dekat.
 
Prometium juga dapat terbentuk di alam sebagai produk [[pembelahan spontan|fisi spontan]] [[uranium-238]].{{sfn|Lavrukhina|Pozdnyakov|1966|p=117}} Hanya sejumlah kecil yang dapat ditemukan dalam bijih alami: sampel [[uraninit]] telah ditemukan mengandung prometium pada konsentrasi empat bagian per kuintiliun (4{{e|-18}}) massa.<ref>{{cite journal |author1=Attrep, Moses Jr. |author2=Kuroda, P. K. |name-list-style=amp |date=Mei 1968 |title=Promethium in pitchblende |journal=Journal of Inorganic and Nuclear Chemistry |volume=30 |issue=3 |pages=699–703 |doi=10.1016/0022-1902(68)80427-0}}</ref> Uranium dengan demikian "bertanggung jawab" atas 560&nbsp;gram prometium di kerak Bumi.<ref name="Mammamia">{{cite journal |last1=Belli |first1=P. |last2=Bernabei |first2=R. |last3=Cappella |first3=F. |last4=Cerulli |first4=R. |last5=Dai |first5=C. J. |last6=Danevich |first6=F. A. |last7=D'Angelo |first7=A. |last8=Incicchitti |first8=A. |last9=Kobychev |first9=V. V. |title=Search for α decay of natural Europium |year=2007 |journal=Nuclear Physics A |volume=789 |issue=1–4 |pages=15–29 |doi=10.1016/j.nuclphysa.2007.03.001 |bibcode=2007NuPhA.789...15B |display-authors=3}}</ref>
 
Prometium juga telah teridentifikasi dalam spektrum bintang [[GY Andromedae|HR 465]] di rasi [[Andromeda (rasi bintang)|Andromeda]]; ia juga telah ditemukan dalam HD 101065 ([[bintang Przybylski]]) dan HD 965.<ref>{{cite journal|author1=C. R. Cowley |author2=W. P. Bidelman |author3=S. Hubrig |author4=G. Mathys |author5=D. J. Bord |name-list-style=amp |year = 2004|title = On the possible presence of promethium in the spectra of HD 101065 (Przybylski's star) and HD 965|journal = Astronomy & Astrophysics|volume = 419|pages = 1087–1093|doi = 10.1051/0004-6361:20035726|bibcode=2004A&A...419.1087C|issue = 3|doi-access=free}}</ref> Karena waktu paruh isotop prometium yang pendek, mereka seharusnya terbentuk di dekat permukaan bintang tersebut.<ref name="CRCel">{{cite book | editor= Haynes, William M. | year = 2011 | title = CRC Handbook of Chemistry and Physics | edition = 92 | publisher = [[CRC Press]] | isbn = 978-1439855119|page=4.28|chapter=Prometium in "The Elements"|author=Hammond, C. R.| title-link = CRC Handbook of Chemistry and Physics }}</ref>
==Sejarah==
===Pencarian unsur 61===
Pada tahun 1902, ahli kimia Ceko [[Bohuslav Brauner]] menemukan bahwa perbedaan sifat antara neodimium dan samarium adalah yang terbesar di antara dua lantanida berturut-turut dalam urutan yang diketahui; sebagai kesimpulan, dia memperkirakan bahwa ada sebuah unsur dengan sifat perantara di antara mereka.<ref name="61a">{{cite journal|title =A Revised Periodic Table: With the Lanthanides Repositioned|journal=Foundations of Chemistry|volume=7|issue=3|year=2005|doi=10.1007/s10698-004-5959-9|pages=203–233|first=Michael|last=Laing|s2cid=97792365}}</ref> Prediksi ini didukung pada tahun 1914 oleh [[Henry Moseley]] yang, setelah menemukan bahwa [[nomor atom]] adalah sifat unsur-unsur yang dapat diukur secara eksperimental, menemukan bahwa beberapa nomor atom tidak memiliki unsur-unsur yang sesuai: celahnya adalah 43, 61, 72, 75, 85, dan 87.<ref>{{cite book|title=Atomic and Nuclear Physics: An Introduction in S.I. Units|edition=2|year=1968|publisher=Van Nostrand|page=109|last1=Littlefield |first1=Thomas Albert|last2=Thorley|first2=Norman}}</ref> Dengan mengetahui celah dalam tabel periodik, beberapa kelompok mulai mencari unsur yang diprediksi di antara tanah jarang lainnya di lingkungan alam.{{sfn|Lavrukhina|Pozdnyakov|1966|p=108}}<ref name="Weeks">{{cite book |last1=Weeks |first1=Mary Elvira |title=The discovery of the elements |date=1956 |publisher=Journal of Chemical Education |location=Easton, PA |url=https://archive.org/details/discoveryoftheel002045mbp |edition=6 }}</ref><ref name="Marshall">{{cite journal |last1=Marshall |first1=James L. Marshall |last2=Marshall |first2=Virginia R. Marshall |title=Rediscovery of the elements: The Rare Earths–The Last Member |journal=The Hexagon |date=2016 |pages=4–9 |url=https://chemistry.unt.edu/sites/default/files/users/owj0001/rare%20earths%20III_0.pdf |access-date=3 Juni 2023}}</ref>
 
Klaim pertama dari sebuah penemuan diterbitkan oleh Luigi Rolla dan Lorenzo Fernandes dari [[Firenze|Florence]], Italia. Setelah memisahkan campuran beberapa konsentrat nitrat unsur tanah jarang dari [[monasit]] mineral [[Brasil]] dengan kristalisasi fraksionasi, mereka menghasilkan larutan yang sebagian besar mengandung samarium. Solusi ini memberikan spektrum sinar-X yang dikaitkan dengan samarium dan unsur 61. Untuk menghormati kota mereka, mereka menamai unsur 61 dengan "florentium". Hasilnya dipublikasikan pada tahun 1926, tetapi para ilmuwan mengklaim bahwa percobaan itu dilakukan pada tahun 1924.<ref>{{cite journal|doi=10.1002/zaac.19261570129|title=Über das Element der Atomnummer 61|year=1926|last1=Rolla|first1=Luigi|last2=Fernandes|first2=Lorenzo|journal=Zeitschrift für Anorganische und Allgemeine Chemie|volume=157|pages=371–381|language=de}}</ref><ref>{{cite journal|doi=10.1038/120014c0|title=Florentium or Illinium?|year=1927|author=Noyes, W. A.|journal=Nature |volume=120|pages=14|issue=3009|bibcode=1927Natur.120...14N|s2cid=4094131}}</ref><ref>{{cite journal|doi=10.1038/119637a0|title=Florentium or Illinium?|year=1927|author=Rolla, L.|journal=Nature |volume=119|pages=637|last2=Fernandes|first2=L.|issue=3000|bibcode=1927Natur.119..637R|s2cid=4127574}}</ref><ref>{{cite journal|doi=10.1002/zaac.19281690128|title=Florentium. II|year=1928 |author=Rolla, Luigi|journal=Zeitschrift für Anorganische und Allgemeine Chemie|volume=169|pages=319–320|last2=Fernandes|first2=Lorenzo}}</ref><ref>{{cite journal |doi=10.1002/zaac.19271630104|title=Florentium|year=1927|author=Rolla, Luigi|journal=Zeitschrift für Anorganische und Allgemeine Chemie|volume=163 |pages=40–42|last2=Fernandes |first2=Lorenzo}}</ref><ref>{{cite journal|doi=10.1002/zaac.19271600119|title=Über Das Element der Atomnummer 61 (Florentium)|year=1927|author=Rolla, Luigi|journal=Zeitschrift für Anorganische und Allgemeine Chemie|volume=160|pages=190–192|last2=Fernandes|first2=Lorenzo}}</ref> Juga pada tahun 1926, sekelompok ilmuwan dari [[Universitas Illinois Urbana-Champaign|Universitas Illinois Urbana–Champaign]], Smith Hopkins dan Len Yntema menerbitkan penemuan unsur 61. Mereka menamainya "illinium", dari nama universitasnya.<ref>{{cite journal |doi=10.1038/117792a0|title=The Element of Atomic Number 61; Illinium|year=1926|author=Harris, J. A.|journal=Nature|volume=117|pages=792|last2=Yntema|first2=L. F.|last3=Hopkins|first3=B. S.|issue=2953 |bibcode=1926Natur.117..792H|doi-access=free}}</ref><ref>{{cite journal|doi=10.1038/118084b0|title=The New Element of Atomic Number 61: Illinium|year=1926|author=Brauner, Bohuslav |journal=Nature|volume=118|pages=84–85|issue=2959|bibcode=1926Natur.118...84B|s2cid=4089909}}</ref><ref>{{cite journal|doi=10.1007/BF01490264|title=Über das Element 61 (Illinium)|year=1926 |author=Meyer, R. J.|journal=Naturwissenschaften|volume=14|pages=771|last2=Schumacher|first2=G.|last3=Kotowski|first3=A.|bibcode=1926NW.....14..771M|issue=33|s2cid=46235121}}</ref> Kedua penemuan yang dilaporkan ini terbukti keliru karena garis spektrum yang "sesuai" dengan unsur 61 identik dengan [[didimium]]; garis-garis yang dianggap milik unsur 61 ternyata milik beberapa pengotor ([[barium]], [[kromium]], dan [[platina]]).{{sfn|Lavrukhina|Pozdnyakov|1966|p=108}}
 
<!----REF!!!--->Pada tahun 1934, [[Josef Mattauch]] akhirnya merumuskan [[Aturan isobar Mattauch|aturan isobar]]. Salah satu akibat tidak langsung dari aturan ini adalah unsur 61 tidak dapat membentuk isotop stabil.{{sfn|Lavrukhina|Pozdnyakov|1966|p=108}}<ref name="rare-earth-handbook">{{cite book|last1=Thyssen|first1=Pieter|last2=Binnemans|first2=Koen|editor1-last=Gschneider|editor1-first=Karl A. Jr.|editor2-last=Bünzli|editor2-first=Jean-Claude|editor3-last=Pecharsky|editor3-first=Vitalij K.|chapter=Accommodation of the Rare Earths in the Periodic Table: A Historical Analysis|title=Handbook on the Physics and Chemistry of Rare Earths|year=2011|page=63|publisher=Elsevier|location=Amsterdam|isbn=978-0-444-53590-0|oclc=690920513|chapter-url=https://books.google.com/books?id=8SstnPFSzb0C&pg=PA66|access-date=3 Juni 2023}}</ref> Sejak tahun 1938, percobaan nuklir dilakukan oleh H. B. Law dkk. di [[Universitas Negeri Ohio]]. Nuklida diproduksi pada tahun 1941 yang bukan merupakan radioisotop neodimium atau samarium, dan nama "cyclonium" diusulkan, tetapi tidak ada bukti kimia bahwa unsur 61 diproduksi dan penemuannya tidak banyak diketahui.{{sfn|Emsley|2011|p=428}}<ref>{{cite book |first1=Marco |last1=Fontani |first2=Mariagrazia |last2=Costa |first3=Mary Virginia |last3=Orna |trans-title=The Periodic Table's Shadow Side |title=The Lost Elements |url=https://archive.org/details/lostelementsperi0000font |publisher=Oxford University Press |place=New York |year=2015 |orig-year=2014 |isbn=978-0-19-938334-4 |pages=[https://archive.org/details/lostelementsperi0000font/page/n345 302]–303}}</ref>
===Penemuan dan sintesis logam prometium===
Prometium pertama kali diproduksi dan dikarakterisasi di [[Laboratorium Nasional Oak Ridge]] (Laboratorium Clinton pada waktu itu) pada tahun 1945 oleh [[Jacob A. Marinsky]], [[Lawrence E. Glendenin]], dan [[Charles D. Coryell]] melalui pemisahan dan analisis produk fisi bahan bakar [[uranium]] yang diiradiasi dalam [[Reaktor Grafit X-10|reaktor grafit]]; namun, karena terlalu sibuk dengan penelitian terkait militer selama [[Perang Dunia II]], mereka baru mengumumkan penemuan mereka pada tahun 1947.<ref name="Marinsky">{{cite journal |doi=10.1021/ja01203a059 |year=1947 |last1=Marinsky |first1=J. A. |last2=Glendenin |first2=L. E. |last3=Coryell |first3=C. D. |journal=Journal of the American Chemical Society |volume=69 |issue=11 |pages=2781–5 |pmid=20270831 |title=The chemical identification of radioisotopes of neodymium and of element 61|hdl=2027/mdp.39015086506477 |hdl-access=free }}</ref><ref>{{cite journal |year=2003 |title=Discovery of Promethium |journal=Oak Ridge National Laboratory Review |volume=36 |issue=1 |url= http://www.ornl.gov/info/ornlreview/v36_1_03/article_02.shtml |access-date=3 Juni 2023 |url-status=dead |archive-url= https://web.archive.org/web/20150706071605/http://www.ornl.gov/info/ornlreview/v36_1_03/article_02.shtml |archive-date=6 Juli 2015}}<br />{{cite journal |year=2003 |title=Discovery of Promethium |journal=Oak Ridge National Laboratory Review |volume=36 |issue=1 |page=3 |url=https://www.ornl.gov/sites/default/files/ORNL%20Review%20v36n1%202003.pdf#page=5 |access-date=3 Juni 2023}}</ref> Nama asli yang diusulkan adalah "clintonium", sesuai nama laboratorium tempat pekerjaan itu dilakukan; namun, nama "prometheum" disarankan oleh Grace Mary Coryell, istri salah satu penemunya.{{sfn|Emsley|2011|p=428}} Nama itu berasal dari [[Prometheus (mitologi)|Prometheus]], Titan dalam [[mitologi Yunani]] yang mencuri api dari Gunung Olympus dan membawanya ke manusia{{sfn|Emsley|2011|p=428}} dan melambangkan "keberanian dan kemungkinan penyalahgunaan kecerdasan umat manusia".<ref>{{cite book|title=Inorganic Chemistry|publisher=John Wiley and Sons|page=1694|first1=Egon|last1=Wiberg|first2=Nils|last2=Wiberg |first3=Arnold Frederick|last3=Holleman|year=2001|isbn=978-0-12-352651-9}}</ref> Ejaannya kemudian diubah menjadi "promethium" (prometium dalam bahasa Indonesia), karena hal ini sesuai dengan kebanyakan logam lainnya.{{sfn|Emsley|2011|p=428}}
 
<gallery widths="180" heights="200" class="center">
Berkas:Jacob A Marinsky.jpg|[[Jacob A. Marinsky]]
Berkas:Larry E Glendenin.jpg|[[Lawrence E. Glendenin]]
Berkas:Charles D. Coryell M.I.T. May 1947.png|[[Charles D. Coryell]]
</gallery>
 
Pada tahun 1963, prometium(III) fluorida digunakan untuk membuat logam prometium. Untuk sementara dimurnikan dari pengotor samarium, neodimium, dan [[amerisium]], ia dimasukkan ke dalam wadah [[tantalum]] yang terletak di wadah tantalum lain; wadah luar mengandung logam litium (10 kali lebih banyak dibandingkan dengan prometium).{{sfn|Emsley|2011|p=429}}{{sfn|Lavrukhina|Pozdnyakov|1966|p=123}} Setelah membuat ruang hampa, bahan kimia dicampur untuk menghasilkan logam prometium:
 
:PmF<sub>3</sub> + 3&nbsp;Li → Pm + 3&nbsp;LiF
 
Sampel prometium yang dihasilkan digunakan untuk mengukur beberapa sifat logam, seperti [[titik lebur]]nya.{{sfn|Lavrukhina|Pozdnyakov|1966|p=123}}
 
Pada tahun 1963, metode pertukaran ion digunakan di ORNL untuk menyiapkan sekitar sepuluh gram prometium dari limbah pemrosesan bahan bakar reaktor nuklir.<ref name="CRCel" /><ref>{{cite journal|doi =10.1007/BF02037697|title =Chemical study on the separation and purification of promethium-147|year =1989|author =Lee, Chung-Sin|journal =Journal of Radioanalytical and Nuclear Chemistry|volume =130|pages =21–37|last2 =Wang|first2 =Yun-Ming|last3 =Cheng|first3 =Wu-Long|last4 =Ting|first4 =Gann|s2cid =96599441}}</ref><ref>{{cite web |url= http://www.ornl.gov/info/reports/1962/3445605484259.pdf |title= Ion exchange purification of promethium-147 and its separation from americium-241, with diethylenetriaminepenta-acetic acid as the eluant |author= Orr, P. B. |publisher= Oak Ridge National Laboratory |year= 1962 |access-date= 3 Juni 2023 |archive-url= https://web.archive.org/web/20110629124017/http://www.ornl.gov/info/reports/1962/3445605484259.pdf |archive-date= 29 Juni 2011 |url-status= dead }}<br />{{cite journal |url=https://www.osti.gov/servlets/purl/4819080/ |title=Ion exchange purification of promethium-147 and its separation from americium-241, with diethylenetriaminepenta-acetic acid as the eluant |author=Orr, P. B. |publisher=Oak Ridge National Laboratory |year=1962 |doi=10.2172/4819080 |access-date=3 Juni 2023 |hdl=2027/mdp.39015077313933 |osti=4819080 }}</ref>
 
Prometium dapat diperoleh kembali dari produk sampingan fisi uranium atau diproduksi dengan membombardir <sup>146</sup>Nd dengan [[neutron]], mengubahnya menjadi <sup>147</sup>Nd yang meluruh menjadi [[Isotop prometium#Prometium-147|<sup>147</sup>Pm]] melalui peluruhan beta dengan waktu paruh 11 hari.<ref>{{cite web|url=http://education.jlab.org/itselemental/ele061.html|title=The Element Promethium|last=Gagnon|first=Steve|work=Jefferson Lab|publisher=Science Education|access-date=3 Juni 2023}}</ref>
==Produksi==
Metode produksi untuk isotop yang berbeda bervariasi, dan hanya prometium-147 yang diberikan karena merupakan satu-satunya isotop dengan aplikasi industri. Prometium-147 diproduksi dalam jumlah besar (dibandingkan dengan isotop lain) dengan membombardir uranium-235 dengan [[Suhu neutron#Termal|neutron termal]]. Outputnya relatif tinggi, yaitu 2,6% dari total produk.{{sfn|Lavrukhina|Pozdnyakov|1966|p=115}} Cara lain untuk menghasilkan prometium-147 adalah melalui neodimium-147, yang meluruh menjadi prometium-147 dengan waktu paruh yang singkat. Neodimium-147 dapat diperoleh baik dengan membombardir neodimium-146 yang diperkaya dengan neutron termal<ref name="Russia" /> atau dengan membombardir target [[uranium karbida]] dengan proton energik dalam akselerator partikel.<ref>{{cite book|title = Applications of inorganic mass spectrometry|year = 2011|page = 144|publisher = Springer|isbn = 978-3-642-21022-8|last1 = Hänninen|first1 = Pekka|last2 = Härmä|first2 = Harri}}</ref> Metode lain adalah membombardir uranium-238 dengan [[Suhu neutron#Cepat|neutron cepat]] untuk menyebabkan [[fisi cepat]], yang, di antara beberapa produk reaksi, menghasilkan prometium-147.<ref name="De2001">{{cite book|title = Applications of inorganic mass spectrometry|isbn=978-0471345398
|year = 2001|author1=De Laeter |author2=J. R. |page = 205|publisher = Wiley-IEEE}}</ref><!--gimana prometium diekstrak secara kimiawi?-->
 
Sejak tahun 1960-an, Laboratorium Nasional Oak Ridge dapat memproduksi 650&nbsp;gram prometium per tahun{{sfn|Lavrukhina|Pozdnyakov|1966|p=116}} dan merupakan satu-satunya fasilitas sintesis volume besar di dunia.<ref>{{cite book|title = On the Home Front: The Cold War Legacy of the Hanford Nuclear Site|url = https://archive.org/details/onhomefrontcoldw0000gerb_r2s0|year = 2007|edition = 3|publisher = University of Nebraska Press|page = [https://archive.org/details/onhomefrontcoldw0000gerb_r2s0/page/n191 162]|isbn = 978-0-8032-5995-9|last1 = Gerber|first1 = Michele Stenehjem|last2 = Findlay|first2 = John M.}}</ref> Produksi prometium skala gram telah dihentikan di AS pada awal 1980-an, tetapi kemungkinan akan dilanjutkan setelah 2010 di [[Reaktor Isotop Fluks Tinggi]]. {{Update inline|date=Juni 2023}} Pada tahun 2010, Rusia adalah satu-satunya negara yang memproduksi prometium-147 dalam skala yang relatif besar.<ref name="Russia">{{cite book|title = Radioisotope Thin-Film Powered Microsystems|year = 2010|isbn = 978-1441967626|last1 = Duggirala|first1 = Rajesh|last2 = Lal|first2 = Amit|last3 = Radhakrishnan|first3 = Shankar|publisher = Springer|page=12|url=https://books.google.com/books?id=AoWbhNoLwnYC&pg=PA12}}</ref>
==Aplikasi==
[[Berkas:Pm,61.jpg|thumb|right|upright=0.9|Prometium(III) klorida digunakan sebagai sumber cahaya untuk sinyal pada tombol panas]]
Sebagian besar prometium hanya digunakan untuk tujuan penelitian, kecuali prometium-147, yang dapat ditemukan di luar laboratorium.{{sfn|Emsley|2011|p=428}} Ia diperoleh sebagai oksida atau klorida,{{sfn|Lavrukhina|Pozdnyakov|1966|p=118}} dalam jumlah miligram.{{sfn|Emsley|2011|p=428}} Isotop ini tidak memancarkan [[sinar gama]], dan radiasinya memiliki kedalaman penetrasi materi yang relatif kecil dan waktu paruh yang relatif lama.{{sfn|Lavrukhina|Pozdnyakov|1966|p=118}}
 
Beberapa lampu sinyal menggunakan [[cat bercahaya]], mengandung [[fosfor]] yang menyerap radiasi beta yang dipancarkan oleh promethium-147 dan memancarkan cahaya.<ref name="CRCel" />{{sfn|Emsley|2011|p=428}} Isotop ini tidak menyebabkan penuaan fosfor, seperti yang dilakukan oleh pemancar alfa,{{sfn|Lavrukhina|Pozdnyakov|1966|p=118}} dan karena itu emisi cahayanya stabil selama beberapa tahun.{{sfn|Lavrukhina|Pozdnyakov|1966|p=118}} Awalnya, [[radium]]-226 digunakan untuk tujuan tersebut, tetapi kemudian digantikan oleh prometium-147 dan [[tritium]] (hidrogen-3).<ref>{{Cite book|title = Man-made and natural radioactivity in environmental pollution and radiochronology|url = https://archive.org/details/manmadenaturalra0000unse|year = 2004|page = [https://archive.org/details/manmadenaturalra0000unse/page/n93 78]|isbn = 978-1-4020-1860-2|last1 = Tykva|first1 = Richard
|last2 = Berg|first2 = Dieter|publisher=Springer}}</ref> Prometium mungkin lebih disukai daripada tritium karena alasan [[Keselamatan dan keamanan nuklir|keamanan nuklir]].<ref name="Deeter1993">{{cite book
|title = Disease and the Environment|year = 1993|author = Deeter, David P.|page = 187|publisher = Government Printing Office}}</ref>
 
Dalam [[baterai atom]], partikel beta yang dipancarkan oleh prometium-147 diubah menjadi arus listrik dengan mengapit sumber prometium kecil di antara dua pelat semikonduktor. Baterai ini memiliki masa manfaat sekitar lima tahun.<ref name="brit" /><ref name="CRCel" />{{sfn|Emsley|2011|p=428}} Baterai berbasis prometium pertama dirakit pada tahun 1964 dan menghasilkan "daya beberapa miliwatt dari volume sekitar 2 inci kubik, termasuk pelindung".<ref>{{cite journal|doi=10.1109/T-ED.1964.15271|title=Construction of a promethium-147 atomic battery|year=1964|last1=Flicker|first1=H.|last2=Loferski|first2=J. J.|last3=Elleman|first3=T. S.|journal=IEEE Transactions on Electron Devices|volume=11|issue=1|pages=2|bibcode=1964ITED...11....2F}}</ref>
 
Prometium juga digunakan untuk mengukur ketebalan bahan dengan mengevaluasi jumlah radiasi dari sumber prometium yang melewati sampel.<ref name="CRCel" />{{sfn|Emsley|2011|p=429}}<ref>{{cite book |title=The Terrorist Effect – Weapons of Mass Disruption: The Danger of Nuclear Terrorism |last1=Jones |first1=James William |last2=Haygood |first2=John R. |year=2011 |publisher=iUniverse |isbn=978-1-4620-3932-6 |page=180 |url=https://books.google.com/books?id=YwE0W6LsxygC&pg=PA180|access-date=3 Juni 2023}}</ref> Ia memiliki kemungkinan penggunaan masa depan dalam sumber sinar-X portabel, dan sebagai panas tambahan atau sumber daya untuk wahana antariksa dan satelit<ref name="Stwertka2002">{{cite book|title = A guide to the elements|url = https://archive.org/details/guidetoelements0002stwe|year = 2002|publisher = Oxford University Press|author = Stwertka, Albert|page = [https://archive.org/details/guidetoelements0002stwe/page/154 154]|isbn = 978-0-19-515026-1}}</ref> (walaupun pemancar alfa [[plutonium-238]] telah menjadi standar untuk sebagian besar penggunaan terkait eksplorasi ruang angkasa).<ref name="Radioisotope2009">{{cite book|title = Radioisotope power systems: an imperative for maintaining U.S. leadership in space exploration|year = 2009|author = Radioisotope Power Systems Committee, National Research Council U.S.|page = 8|isbn = 978-0-309-13857-4|publisher = National Academies Press}}</ref>
 
Prometium-147 juga digunakan, meskipun dalam jumlah yang sangat kecil (kurang dari 330nCi), pada beberapa sakelar pijar CFL (Compact Fluorescent Lamp) [[Philips]] dalam rentang CFL 22W/28W 15mm PLC.<ref>https://www.msdsdigital.com/system/files/PHILIPS-CFL-15MM.pdf<nowiki/>MSDS untuk lampu Philips CFL yang mengandung Pm-147.</ref>
==Pencegahan==
Prometium tidak memiliki peran biologis. Prometium-147 dapat memancarkan sinar gama selama [[peluruhan beta]],<ref name="Simmons1964">{{cite journal|title = Reed Business Information|year = 1964|author = Simmons, Howard|journal = New Scientist|page = 292|volume = 22|issue = 389}}</ref> yang berbahaya bagi semua bentuk kehidupan. Interaksi dengan prometium-147 dalam jumlah kecil tidak berbahaya jika tindakan pencegahan tertentu diperhatikan.<ref name="Army1987">{{cite book|title=Operator, organizational, direct support, and general support maintenance manual: installation, operation, and checkout procedures for Joint-Services Interior Intrusion Detection System (J-SIIDS).|url=https://books.google.com/books?id=JfoXAAAAYAAJ&pg=PP5|year=1991|publisher=Headquarters, Departments of the Army, Navy, and Air Force|page=5}}</ref> Secara umum, sarung tangan, penutup alas kaki, kacamata pengaman, dan lapisan luar pakaian pelindung yang mudah dilepas harus digunakan.<ref name="Pmlist" />
 
Tidak diketahui organ manusia mana yang dipengaruhi oleh interaksi dengan prometium; kandidat yang mungkin adalah [[tulang|jaringan tulang]].<ref name="Pmlist" /> Prometium-147 yang disegel tidak berbahaya. Namun jika kemasannya rusak, maka prometium menjadi berbahaya bagi lingkungan dan manusia. Jika ditemukan [[pencemaran radioaktif|kontaminasi radioaktif]], area yang terkontaminasi harus dicuci dengan air dan sabun, tetapi meskipun prometium terutama menyerang kulit, kulit seharusnya tidak terkelupas. Jika ditemukan kebocoran prometium, area tersebut harus diidentifikasi sebagai berbahaya dan dievakuasi, dan layanan darurat harus dihubungi. Tidak ada bahaya dari prometium selain dari radioaktivitas yang diketahui.<ref name="Pmlist">{{cite web |title=Radioactive Material Safety Data Sheet |author1=Stuart Hunt |author2=Associates Lt. |name-list-style=amp |url=https://www.stuarthunt.com/uploads/downloads/RMSDS%20Documents/Promethium-147-Sealed.pdf |access-date=3 Juni 2023 |archive-date=2021-09-15 |archive-url=https://web.archive.org/web/20210915131347/https://www.stuarthunt.com/uploads/downloads/RMSDS%20Documents/Promethium-147-Sealed.pdf |dead-url=yes }}</ref>
==Referensi==
{{Reflist|30em}}
==Bibliografi==
*{{cite book |last=Emsley |first=John |title=Nature's Building Blocks: An A-Z Guide to the Elements |url=https://books.google.com/books?id=2EfYXzwPo3UC&pg=PA428 |year=2011 |publisher=Oxford University Press |isbn=978-0-19-960563-7 |pages=428–430 }}
*{{cite book |title=Аналитическая химия технеция, прометия, астатина и франция (Analytical Chemistry of Technetium, Promethium, Astatine, and Francium) |language=ru |first1=Avgusta Konstantinovna |last1=Lavrukhina |first2=Aleksandr Aleksandrovich |last2=Pozdnyakov |year=1966 |publisher=[[Nauka (publisher)|Nauka]] }}
*2013, E.R. Scerri, ''A tale of seven elements,'' Oxford University Press, Oxford, {{ISBN|9780195391312}}
==Pranala luar==
{{Commons|Promethium}}
{{Wiktionary|prometium}}
* {{en}} [http://education.jlab.org/itselemental/ele061.html It's Elemental – Promethium]
 
{{Tabel periodik unsur kimia}}
{{Senyawa prometium}}
{{kimia-stub}}
{{Authority control}}
 
[[Kategori:Prometium| ]]
[[Kategori:Unsur kimia]]
[[Kategori:Lantanida]]
 
[[Kategori:Unsur kimia sintetis]]
[[bs:Prometijum]]
[[caKategori:PrometiPrometheus]]
[[Kategori:Unsur kimia dengan struktur padat heksagon ganda]]
[[co:Promeziu]]
[[cs:Promethium]]
[[da:Promethium]]
[[de:Promethium]]
[[el:Προμήθειο]]
[[en:Promethium]]
[[eo:Prometio]]
[[es:Prometio]]
[[et:Promeetium]]
[[fi:Prometium]]
[[fr:Prométhium]]
[[fur:Prometi]]
[[gl:Promecio (elemento)]]
[[he:פרומטיום]]
[[hr:Prometij]]
[[hu:Promécium]]
[[io:Prometio]]
[[it:Promezio]]
[[ja:プロメチウム]]
[[jbo:fagycevjinme]]
[[ko:프로메튬]]
[[la:Promethium]]
[[lb:Promethium]]
[[lt:Prometis]]
[[lv:Prometijs]]
[[mr:प्रोमेथियम]]
[[nl:Promethium]]
[[nn:Promethium]]
[[no:Promethium]]
[[pl:Promet]]
[[pt:Promécio]]
[[ru:Прометий]]
[[sh:Prometijum]]
[[sk:Prométium]]
[[sl:Prometij]]
[[sr:Прометијум]]
[[sv:Prometium]]
[[th:โพรมีเทียม]]
[[tr:Prometyum]]
[[uk:Прометій]]
[[zh:钷]]