Autopandu: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Tidak ada ringkasan suntingan |
|||
(27 revisi perantara oleh 14 pengguna tidak ditampilkan) | |||
Baris 1:
[[Berkas:FMS B747-cockpit.jpg|
'''Pilot otomatis''' atau '''autopandu''' (dari [[bahasa Inggris]]: ''autopilot'') adalah sebuah sistem mekanikal, elektrikal, atau
== Deskripsi ==▼
Dalam masa-masa awal transportasi udara, pesawat udara membutuhkan perhatian terus menerus dari seorang [[pilot]] agar dapat terbang dengan aman. Hal ini membutuhkan perhatian yang sangat tinggi dari awak pesawat dan mengakibatkan kelelahan. Sistem pilot otomatis diciptakan untuk menjalankan beberapa tugas dari pilot. ▼
[[Berkas:
▲Dalam masa-masa awal transportasi udara, pesawat udara membutuhkan perhatian terus menerus dari seorang [[pilot]] agar dapat terbang dengan aman. Hal ini membutuhkan perhatian yang sangat tinggi dari awak pesawat dan mengakibatkan kelelahan. Sistem pilot otomatis diciptakan untuk menjalankan beberapa tugas dari pilot.
Sistem pilot otomatis pertama diciptakan oleh [[Sperry Corporation]] tahun [[1912]]. [[Lawrence Sperry]] (anak dari penemu ternama [[Elmer Sperry]]) mendemonstrasikannya dua tahun kemudian pada [[1914]] serta membuktikan kredibilitas penemuannya itu dengan menerbangkan sebuah pesawat tanpa disetir olehnya.
Baris 9 ⟶ 12:
Pada awal 1920-an, [[tanker]] [[Standard Oil]] ''J.A Moffet'' menjadi kapal pertama yang menggunakan pilot otomatis.
▲==Deskripsi==
▲[[Berkas:Autopilot System.JPG|300px|jmpl|Autopilot System.]]
[[Berkas:АБСУ-145М.jpg|300px|jmpl|Autopilot System.]]▼
[[Berkas:14 Autopilot Functional Context N2 Diagram.jpg|300px|jmpl|Autopilot System.]]▼
▲[[Berkas:18 Autopilot Example FFBD.jpg|300px|jmpl|Autopilot System.]]
Pada tahun 1931, seorang pilot Amerika Wiley Post terbang dengan pesawat Locheed Vega--"Winnie Mae"-- dalam rangka mengelilingi dunia dengan catatan catatan delapan hari 15 jam 5 menit. Post memiliki sebuah navigator yang dinamakannya Harold Gatty untuk membantunya tetap betah dan melawan lelah pada penerbangan bersejarah tersebut. Namun ketika Post menjadi orang pertama yang terbang solo mengelilingi dunia pada tahun 1933, semuanya ia lakukan sendiri tanpa bantuan tenaga orang lain. Dan ternyata rahasia suksesnya atau minimal salah satu rahasia suksesnya sangat sederhana, yaitu autopilot yang mengemudikan pesawat ketika ia beristirahat.▼
▲Pada tahun 1931, seorang pilot Amerika, Wiley Post terbang dengan pesawat
Sekarang ini autopilot merupakan sistem yang sangat mutakhir yang mampu melakukan tugas yang sama selayaknya seorang pilot yang sudah sangat terlatih. Pada kenyataannya untuk beberapa prosedur dan rutinitas penerbangan, autopilot bahkan lebih baik dari pada sepasang tangan manusia. Autopilot tidak hanya membuat penerbangan menjadi lebih lancar tetapi juga lebih aman dan lebih efisien.▼
▲Sekarang ini
==Pendahuluan==▼
Sistem kendali atau sistem kontrol (control system) adalah suatu alat (kumpulan alat) untuk mengendalikan, memerintah, dan mengatur keadaan dari suatu sistem. Contoh sederhana sistem kendali ini dapat dipraktekkan secara manual untuk mengendalikan stir mobil pada saat kita mengendarai/menyetir mobil kita, misalnya, dengan menggunakan prinsip loloh balik. Dalam sistem yang otomatis, alat semacam ini sering dipakai untuk peluru kendali sehingga peluru akan mencapai sasaran yang diinginkan. Banyak contoh lain dalam bidang industri / instrumentasi dan dalam kehidupan kita sehari-hari di mana sistem ini dipakai. Alat pendingin (AC) merupakan contoh yang banyak kita jumpai yang menggunakan prinsip sistem kendali, karena suhu ruangan dapat dikendalikan sehingga ruangan berada pada suhu yang kita inginkan.▼
▲== Pendahuluan ==
▲Sistem kendali atau sistem kontrol (''control system'') adalah suatu alat (kumpulan alat) untuk mengendalikan, memerintah, dan mengatur keadaan dari suatu sistem. Contoh sederhana sistem kendali ini dapat
== Sejarah Singkat Autopilot ==▼
▲[[Berkas:АБСУ-145М.jpg|300px|jmpl|Autopilot System.]]
▲[[Berkas:14 Autopilot Functional Context N2 Diagram.jpg|300px|jmpl|Autopilot System.]]
▲==Sejarah Singkat Autopilot==
[[Berkas:18 Autopilot Example FFBD.jpg|300px|jmpl|Autopilot System.]]
Orang
Penemuan Sperry ini, lalu diaplikasikan kedalam
== Autopilots and Avionics ==
Pilot automatis atau autopilot merupakan seperangkat peralatan untuk mengendalikan pesawat luar angkasa (spacecraft), pesawat udara (aircraft), kapal laut, misil (peluru kendali), dan kendaraan lain tanpa intervensi tangan manusia secara konstan. Banyak orang beranggapan bahwa autopilot hanya terdapat pada pesawat terbang/pesawat udara sebagaimana yang sering kita dapati dalam setiap pesawat terbang saat ini, namun pada dasarnya prinsip kerjanya adalah sama
Image courtesy of Bill Harris.
Dalam dunia pesawat terbang, atau lebih akuratnya dijelaskan dengan Automatic Flight Control System (AFCS). AFCS merupakan salah satu bahagian dari aircraft's
Walaupun terdapat banyak variasi dari sistem autopilot, kebanyakan sistem autopilot dapat diklasifikasikan berdasarkan jumlah bagian (part/surface) yang dikendalikan. Untuk membantu memahaminya kita perlu familiar dengan tiga bagian pengendali dasar (basic control surface) yang mempengaruhi kinerja pesawat. Yang pertama adalah elevator, yang merupakan peralatan yang terletak di ekor pesawat yang berfungsi untuk mengendalikan pitch (manuver pesawat terbang pada sumbu horizontal yang tegak lurus dengan arah pergerakan pesawat terbang). Rudder juga terletak di ekor pesawat terbang. Ketika rudder dimiringkan ke kanan (starboard), pesawat terbang akan berputar pada sumbu vertikal ke arah kiri. Ketika rudder dimiringkan ke kiri (port) pesawat akan berputar kearah yang berlawanan. Dan yang terakhir yaitu: ailerons yang terletak pada ujung belakang setiap sayap, bagian ini berfungsi untuk menggulingkan pesawat dari satu sisi ke sisi lain.
Baris 42 ⟶ 39:
Sistem autopilot mampu mengendalikan salah satu atau semua bagian-bagian tersebut. Berdasarkan jumlah bagian yang dikendalikan inilah sistem autopilot dibagi lagi menjadi tiga. Single-axis autopilot (autopilot sumbu tunggal) hanya mengendalikan salah satu dari ketiga bagian tadi, bagian yang dikendalikan biasanya aileron. Tipe sederhana dari autopilot ini dikenal juga dengan "wing leveler" karena dengan mengendalikan roll (gerakan berguling/berputar pesawat) alat pengendali ini akan menjaga sayap pesawat dalam keadaan stabil. Two-axis autopilot (autopilot dua sumbu ) mengendalikan elevator dan aileron. Dan yang terakhir three-axis autopilot (autopilot tiga sumbu) mengendalikan ketiga sistem pengendali tersebut: aileron, elevator dan rudder.
== Autopilot pada Pesawat Terbang ==
Dalam dunia penerbangan, autopilot disebut dengan nama Automatic Flight Control System (AFCS). Perangkat AFCS adalah bagian dari avionic pesawat terbang, merupakan system elektronik yang digunakan untuk mengontrol sistem kunci dari pesawat dan penerbangan. Selain sistem kontrol penerbangan, avionik juga berfungsi dalam komunikasi elektronik, navigasi, dan untuk mengetahui keadaan cuaca pada lintasan penerbangan. Pada awalnya AFCS digunakan untuk menyediakan bantuan selama tahap-tahap membosankan dalam penerbangan, misalnya saat penerbangan dengan ketinggian optimal. Dengan bantuan pilot otomatis banyak hal yang dapat dilakukan, bahkan saat melakukan manuver dengan sangat tepat, seperti pendaratan pesawat dalam kondisi nol visibilitas.
=== Dasar Kontrol Permukaan Mempengaruhi Kemampuan Manuver Pesawat ===
Walaupun ada banyak perbedaan dalam beberapa sistem autopilot, sebagian besar dapat diklasifikasikan menurut jumlah komponen atau pada sistem kontrol. Ada tiga dasar kontrol permukaan mempengaruhi kemampuan manuver pesawat.
;elevator
Baris 52 ⟶ 49:
Rudder juga terletak di ekor pesawat. Ketika kemudi pada cockpit dimiringkan ke kanan (right), pesawat akan berbelok (berputar pada sumbu vertical) ke arah kanan. Dan saat kemudi dimiringkan ke kiri (port), pesawat pun akan berbelok ke arah kiri.
;Sirip Kemudi (Ailerons)
Terletak
Pilot otomatis dapat mengontrol setiap atau semua permukaan sirip ini. Single-axis autopilot mengatur hanya satu set kontrol, biasanya ailerons. Autopilot dengan tipe sederhana ini dikenal sebagai "wing leveler" yang mengendalikan gerakan dan membuat sayap pesawat secara stabil. Two-axis autopilot mengatur gerakan lift (elevator) dan ailerons. Dan Three-axis autopilot mengelola semua tiga dasar sistem kontrol: ailerons, elevator dan rudder.
== Auto Pilot Systems ==
Sebuah sistem pilot otomatis yang melakukan kontrol pesawat tanpa pilot yang langsung mengontrol manuver pesawat. Autopilot mempertahankan sikap dan/atau arah pesawat dan mengembalikan pesawat ke kondisi semula. Sistem pilot otomatis mampu menjaga pesawat stabil lateral, vertikal, dan membujur.
Baris 65 ⟶ 62:
Ada banyak sistem autopilot yang tersedia. Mereka memiliki berbagai kemampuan dan kompleksitas. Pesawat ringan biasanya memiliki pilot otomatis dengan kemampuan kurang dari performance tinggi dan kategori transportasi pesawat. Integrasi fungsi navigasi umum, bahkan pilot otomatis di pesawat ringan.
Sebagai pilot otomatis meningkatkan kompleksitas, mereka tidak hanya memanipulasi permukaan kontrol penerbangan,
sistem jauh melampaui kemudi pesawat. Mereka mengendalikan pesawat selama tanjakan, keturuna
Beberapa bahkan mengintegrasikan fungsi auto throttle yang secara otomatis mengontrol dorong mesin yang membuat auto-landings menjadi mungkin. Untuk kontrol otomatis lanjut, memiliki sistem manajemen penerbangan yang telah dikembangkan. Melalui penggunaan komputer, sebuah penerbangan seluruh profil dapat diprogram sebelumnya yang memungkinkan pilot untuk mengawasi pelaksanaannya. Sebuah komputer FMS koordinat hampir setiap aspek penerbangan, termasuk autopilot dan auto throttle sistem, pemilihan rute navigasi, skema pengelolaan bahan bakar, dan banyak lagi.
== Operasi Dasar Auto Pilot ==
Dasar untuk operasi sistem autopilot adalah koreksi kesalahan. Ketika sebuah pesawat gagal untuk memenuhi kondisi yang dipilih, kesalahan
Tingkat berbasis pilot otomatis menggunakan informasi tentang tingkat pergerakan pesawat, dan memindahkan kontrol permukaan untuk melawan laju perubahan yang menyebabkan kesalahan. Penggunaan pesawat paling besar berbasis autopilot sistem. Pesawat kecil dapat menggunakan salah satunya.
== Cara Kerja Autopilot ==
Jantung sebuah sistem kontrol penerbangan otomatis modern adalah komputer dengan beberapa prosesor berkecepatan tinggi. Pengumpulan data informasi diperlukan untuk mengendalikan pesawat, prosesor berkomunikasi dengan sensor yang terletak di permukaan kontrol utama. Komputer dapat juga mengumpulkan data dari peralatan pesawat lainnya termasuk gyroscope, pengukur kecepatan, altimeters, kompas dan indikator kecepatan angin.
Prosesor komputer AFCS kemudian mengambil input data dan melakukan perhitungan yang kompleks berdasarkan set mode kontrol. Mode kontrol adalah pengaturan yang dimasukkan oleh pilot yang disesuaikan dengan detail penerbangan. Sebagai contoh, misalnya mode kontrol yang diprogram untuk mempertahankan ketinggian penerbangan. Ada juga mode kontrol yang mempertahankan kecepatan, pos dan jalur penerbangan.
Perhitungan ini menentukan apakah pesawat bisa memahami perintah yang dimasukkan dalam mode kontrol. Prosesor kemudian mengirimkan sinyal ke berbagai unit servomechanis. Sebuah servomechanis, atau servo untuk jangka pendek, adalah sebuah alat yang menyediakan kontrol mekanis jarak jauh. Satu servo digunakan untuk masing-masing kontrol permukaan yang termasuk dalam sistem autopilot. Servo dikendalikan oleh komputer dan mengatur fungsi motor atau
Sistem autopilot modern sekarang dapat menerima data dari Global Positioning System (GPS) menggunakan penerima yang dipasang pada pesawat. Sebuah penerima GPS dapat menentukan posisi pesawat terbang saat sedang dalam penerbangan dengan cara menghitung jarak dari tiga atau lebih satelit dalam jaringan GPS. Berbekal informasi posisi seperti itu, pesawat terbang bisa dengan aman untuk terus melanjutkan rencana penerbangan.
== Komponen Auto Pilot ==
=== Autopilot Parts ===
Sebenarnya yang menjadi jantung dari sistem pengendali penerbangan otomatis modern adalah sebuah komputer dengan beberapa prosesor yang berkecepatan tinggi. Untuk mendapatkan kepintaran yang dibutuhkan untuk mengendalikan pesawat, prosesor berkomunikasi dengan sensor yang diletakkan pada bagian-bagian pengendali utama. Prosesor ini juga mampu mengumpulkan data dari sistem dan peralatan pesawat terbang lain termasuk gyroscope, accelerometer, altimeter, kompas, dan indikator kecepatan udara (airspeed indicator).
Prosesor dalam AFCS akan mengambil data input, kemudian dengan menggunakan perhitungan yang kompleks membandingkannya dengan pengaturan mode pengendali. Setting mode pengendali dimasukkan oleh pilot yang mendefinisikan detail penerbangan. Misalnya mode pengendali mendefinisikan bagaimana ketinggian pesawat ditentukan. Ada juga mode pengendali lain seperti menentukan kecepatan udara dan jalur penerbangan.
Perhitungan tersebut menentukan apakah pesawat telah menjalankan perintah yang diatur oleh mode pengendali atau belum. Prosesor kemudian mengirimkan signal ke berbagai unit servomechanism. Servomechanism atau sering disingkat servo merupakan alat yang memberikan pengendalian mekanis pada suatu jarak tertentu. Satu servo cukup untuk semua bagian kendali yang termasuk dalam sistem autopilot. Servo akan menerima instruksi komputer dan menggunakan motor atau hydraulic untuk menggerakkan bagaian kendali pesawat, menjamin pesawat berada dalam posisi dan jalur yang tepat.
Baris 94 ⟶ 91:
{{quote|Seorang penemu dan insinyur terkenal Elmer mempatenkan gyrocompas pada tahun 1908, namun gyrocompas pertama sekali ditemukan oleh anaknya Lawrence Burst Sperry, yang merupakan orang pertama yang menguji peralatan tersebut pada pesawat terbang. Autopilot Sperry muda menggunakan empat gyroscope untuk menstabilkan pesawat terbang dan telah banyak membantu kebanyakan penerbangan pertama, termasuk penernangan pada saat malam pertama dalam sejarah penerbangan. Pada tahun 1932, Sperry Gyroscope Company telah mengembangkan automatic pilot yang digunakan oleh Wiley Post yang digunakan dalam penerbangan solo pertamanya mengelilingi dunia.}}
Ilustrasi
=== Autopilot Control Systems ===
Autopilot merupakan salah satu contoh dari sistem kontrol. Sistem kontrol bertindak berdasarkan pada pengukuran dan hampir selalu memiliki dampak pada nilai yang diukurnya. Contoh klasik dari sistem kontrol adalah negative feedback loop yang mengendalikan thermostat. Loop tersebut bekerja dengan cara seperti berikut ini:
* Pada saat musim panas pemilik rumah akan mengatur thermostat-nya ke temperatur ruangan yang
* Thermostat akan mengukur temperatur udara dan membandingkannya dengan nilai yang diatur oleh pemilik rumah.
* Setelah beberapa saat, udara panas dari luar rumah akan menaikkan temperatur di dalam rumah. Ketika temperatur di dalam rumah telah melebihi 78 F, akan dikirim signal ke unit ac (air conditioning).
* Air conditioning akan hidup dan mendinginkan ruangan.
* Ketika temperatur di dalam ruangan telah kembali ke nilai 78 F, signal lain akan dikirim ke ac untuk mematikan ac.
Disebut dengan negative feedback loop karena menghasilkan aksi tertentu (ac hidup) yang akan menghalangi kinerja lebih lanjut dari aksi tersebut. Semua negative feedback loop memerlukan sebuah receptor, control center, dan effector. Pada contoh
Sistem pengendali penerbangan otomatis juga bekerja dengan cara yang sama. Misalnya kita ambil contoh pilot yang telah mengaktifkan single-axis autopilot yang juga disebut dengan wing leveler seperti yang telah dikemukakan
* Pilot mengatur mode pengendalian untuk menjaga posisi sayap pada suatu level tertentu.
* Bagaimanapun, walaupun dalam keadaan udara yang tenang, sayap pesawat akan turun.
* Sensor yang terletak di sayap akan mendeteksi penurunan sayap ini dan kemudian mengirim signal ke komputer autopilot.
* Komputer autopilot memproses data dan menyatakan bahwa sayap pesawat tidak lagi berada pada level yang diinginkan.
* Komputer autopilot mengirim signal ke servo untuk mengendalikan aileron pesawat. Signal yang dikirim merupakan sebuah perintah yang sangat spesifik yang memerintahkan servo untuk membuat suatu penyesuaian yang tepat.
* Setiap servo memiliki sebuah motor elektrik yang memiliki kabel yang kekang untuk menarik kabel aileron. Ketika kabel tersebut bergerak bagian kendalipun akan ikut bergerak mengikuti arah pergerakan kabel.
* Karena aileron disesuaikan berdasarkan pada data input, sayap pesawat akan bergerak kembali ke level semula.
* Komputer autopilot menghapus perintah ketika sensor yang terletak di sayap pesawat mendeteksi bahwa sayap telah berada pada level yang diinginkan lagi.
* Servo berhenti menggunakan tekanan terhadap kabel aileron untuk menggerakkan sayap pesawat.
Loop seperti yang ditunjukkan pada diagram blok
=== Komponen Auto Pilot ===
Kebanyakan sistem autopilot terdiri dari empat komponen dasar, ditambah berbagai switch dan unit pembantu. Empat dasar komponen: Sensing Elemen, Computer Elemen, Output Elemen, dan Command Elemen. Banyak sistem autopilot yang lebih maju dengan memiliki elemen kelima: feedback dan follow up. Ini mengacu pada sinyal yang dikirim sebagai koreksi yang dilakukan oleh elemen output menyarankan autopilot dari kemajuan yang dibuat.
=== Sensing Elemen ===
Sikap dan directional gyros, Turn Coordinator, dan Altitude Control adalah Sensing Elemen autopilot. Unit ini merasakan pergerakan pesawat. Mereka menghasilkan sinyal-sinyal listrik yang digunakan oleh autopilot untuk secara otomatis mengambil tindakan korektif yang diperlukan yang diperlukan untuk menjaga pesawat terbang sebagaimana dimaksud. Sensing Salad-gyros dapat ditemukan di kokpit yang dipasang instrumen. Mereka juga dapat dihubungkan secara remote.
Sensor gyro terpencil mendorong menampilkan servo panel kokpit, serta memberikan sinyal input ke komputer autopilot. Pilot otomatis digital modern dapat menggunakan berbagai sensor berbeda. Gyros MEMS dapat digunakan atau disertai dengan menggunakan accelerometers solid state dan magnetometer. Laju sistem berbasis tidak boleh menggunakan gyros sama sekali. Berbagai sensor input mungkin terletak dalam unit yang sama atau unit terpisah dan transfer informasi melalui bus data digital. Informasi navigasi juga terintegrasi melalui koneksi bus data digital untuk komputer avionik.
=== Komputer dan Amplifier ===
Unsur komputasi autopilot mungkin analog atau digital. Fungsinya adalah untuk menafsirkan data Sensing Elemen, mengintegrasikan Command dan input navigasi, dan mengirim sinyal ke elemen
=== Elemen Output ===
Elemen output dari sebuah sistem autopilot adalah servos yang menyebabkan ada pergerakkan dari kontrol penerbangan. Mereka adalah perangkat independen untuk masing-masing saluran kontrol yang mengintegrasikan ke dalam sistem kontrol penerbangan reguler. Desain servo autopilot sangat bervariasi tergantung pada metode aktuasi kontrol penerbangan. Sistem kabel-actuated biasanya memanfaatkan motor servo listrik atau elektro-pneumatik servos. Sistem kontrol penerbangan digerakkan secara
Pesawat dengan kontrol digerakkan oleh kabel menggunakan dua dasar jenis listrik servos yang dioperasikan motor. Motor terhubung ke poros output servo melalui pengurangan gigi. Ketika Motor mulai, berhenti, dan berbalik arah dalam menanggapi dengan perintah dari komputer autopilot. Jenis lain dari servo listrik menggunakan motor yang terus berjalan ditujukan untuk poros output melalui dua kopling magnet. Cengkeraman diatur sedemikian rupa sehingga energi satu kopling mentransmisikan torsi bermotor untuk memutar poros output dalam satu arah; energizing kopling lainnya ternyata berputar pada poros dalam arah yang berlawanan. Electropneumatic servos juga dapat digunakan untuk mendorong kontrol penerbangan kabel dalam beberapa sistem autopilot. Mereka dikendalikan oleh sinyal-sinyal listrik dari amplifier autopilot dan digerakkan oleh sumber tekanan udara yang tepat. Sumber mungkin berupa sistem pompa vakum atau mesin turbin udara. Setiap servo terdiri dari sebuah katup elektromagnetik dan output linkage.
Pesawat dengan sistem kontrol penerbangan
=== Elemen Command ===
Unit Command, disebut pengontrol penerbangan, adalah manusia antarmuka dari autopilot. Hal ini memungkinkan pilot untuk memberitahu autopilot apa yang harus dilakukan. Pengendali penerbangan bervariasi dengan kompleksitas sistem autopilot. Dengan menekan tombol fungsi yang diinginkan, pilot menyebabkan controller untuk mengirim sinyal instruksi ke komputer autopilot, memungkinkan untuk mengaktifkan servos yang tepat untuk melaksanakan perintah. Level flight, climb, descent, beralih ke heading, atau terbang menuju heading yang diinginkan beberapa dari pilihan yang tersedia pada kebanyakan pilot otomatis. Banyak pesawat memanfaatkan banyak alat bantu navigasi radio. Ini dapat dipilih untuk mengeluarkan perintah langsung ke komputer autopilot.
Selain on/off pada controller autopilot, kebanyakan pilot otomatis memiliki tombol disconnect yang terletak di kontrol roda. Switch ini, dioperasikan oleh tekanan ibu jari, sistem autopilot harus dapat digunakan untuk memperbaiki sebuah kerusakan yang terjadi pada sistem atau setiap saat pilot ingin untuk mengambil kontrol manual pesawat.
=== Feedback atau Follow Up ===
Sebagai manuver autopilot pesawat kontrol untuk mencapai sikap penerbangan yang diinginkan, maka harus mengurangi kontrol permukaan koreksi sebagai sikap yang diinginkan hampir tercapai sehingga kontrol dan pesawat datang untuk beristirahat di jalur. Tanpa dilakukan, sistem akan terus berlebihan. Permukaan defleksi akan terjadi sampai sikap yang diinginkan tercapai. Tapi gerakan masih akan terjadi sebagai permukaan kembali ke posisi pra-kesalahan. Sensor Attitude akan sekali lagi mendeteksi kesalahan dan memulai proses koreksi seluruh lagi.
Baris 151 ⟶ 148:
Sebuah tingkat sistem menerima sinyal kesalahan dari tingkat gyro yang dari polaritas tertentu dan besaran yang menyebabkan kontrol akan dipindahkan. Sebagai kontrol melawan kesalahan dan bergerak untuk memperbaikinya, tindak lanjut sinyal polaritas berlawanan dan meningkatkan besarnya kontra sinyal error sampai sikap yang benar pesawat itu dikembalikan. Perpindahan follow up sistem A menggunakan kontrol hantaran untuk membatalkan pesan kesalahan bila sikap terbang telah dipindahkan ke posisi yang benar.
== Fungsi Autopilot ==
Berikut ini deskripsi sistem autopilot yang disajikan untuk menunjukkan fungsi analog autopilot sederhana. Pilot otomatis yang jauh lebih paling canggih, namun banyak fundamental operasi serupa. Sistem pilot otomatis pesawat terbang dengan menggunakan sinyal listrik yang dikembangkan dalam unit gyro - sensor. Unit-unit ini terhubung ke instrumen penerbangan yang menunjukkan arah, tingkat gilirannya, bank, atau pitch. Jika flight Attitude atau heading magnetik berubah, sinyal listrik akan mengembang di gyros. Sinyal-sinyal ini dikirim ke komputer autopilot/Amplifier dan digunakan untuk mengendalikan operasi unit servo. Sebuah servo untuk masing-masing dari tiga saluran kontrol mengkonversi sinyal listrik menjadi kekuatan mekanik, kontrol permukaan yang bergerak sebagai respons terhadap sinyal korektif atau perintah pilot.
Baris 164 ⟶ 161:
Rangkaian saluran lift adalah sama dengan channel aileron, dengan pengecualian bahwa saluran lift mendeteksi dan memperbaiki perubahan pitch attitude pesawat. Untuk kontrol ketinggian, unit dipasang secara remote mengandung ketinggian tekanan diafragma yang digunakan. Mirip dengan Attitude dan gyros directional, ketinggian unit menghasilkan sinyal error ketika pesawat telah bergerak dari ketinggian terpilih. Ini diketahui sebagai fungsi ketinggian. Sinyal mengontrol servos pitch, yang bergerak untuk memperbaiki kesalahan. Fungsi ketinggian yang dipilih menyebabkan sinyal untuk terus dikirim ke servos pitch sampai ketinggian terpilih telah tercapai. Pesawat kemudian mempertahankan ketinggian terpilih menggunakan sinyal altitude hold.
== Kegagalan Autopilot ==
Autopilot bisa berfungsi dengan baik dan bisa juga gagal. Masalah yang paling sering ditemui pada sistem autopilot adalah kegagalan servo baik karena motornya yang buruk ataupun koneksi yang buruk. Sensor posisipun bisa juga tidak berfungsi sehingga menghasilkan tidak ada data input ke komputer autopilot. Untungnya sistem autopilot untuk pesawat terbang dirancang supaya aman dari kegagalan-kegagalan tersebut. Untuk menghentikan sistem autopilot sangat sederhana, awak kru pesawat hanya perlu melakukan pemutusan sistem autopilot dengan cara menarik tuas power switch autopilot atau apabila cara tersebut masih belum berhasil dapat juga dilakukan dengan menarik autopilot circuit breaker.
Pilot otomatis dapat mengalami kegagalan atau tidak berfungsi dengan baik. Masalah yang umum adalah kegagalan beberapa jenis servo, baik karena kinerja motor yang buruk atau karena koneksi yang buruk. Posisi sensor juga bisa mengalami kegagalan dan mengakibatkan hilangnya masukan data ke komputer autopilot. Untungnya, pilot otomatis pada pesawat berawak dirancang sebagai failsafe yaitu pada saat terjadinya kegagalan pada system autopilot, mode kemudi manual bisa segera digunakan. Untuk mengganti autopilot, awak pesawat hanya perlu melepaskan sistem, baik dengan membalik sebuah saklar daya atau dengan menarik pemutus arus autopilot.
Beberapa kecelakaan pesawat terbang disebabkan karena pilot yang gagal untuk memutuskan sistem pengendali penerbangan automatis. Pilot berhenti berusaha untuk mengatur pengendalian yang dilakukan autopilot, tidak mampu memahami mengapa pesawat tidak melakukan perintah yang diberikan. Oleh sebab itulah mengapa pada skenario kondisi yang demikian program-program intruksi penerbangan sangat menegangkan untuk
Beberapa kecelakaan pesawat terbang yang terjadi umumnya karena pilot gagal mematikan system autopilot yang tiba-tiba tidak berfungsi sehingga pesawat terbang sama sekali tidak bisa dikendalikan. Beberapa waktu yang lalu para pilot sempat menolak penggunaan autopilot dengan alasan keselamatan penerbangan. Itulah sebabnya mengapa sering kali dilakukan pelatihan program instruksi penerbangan untuk skenario pada sistuasi seperti itu. Pilot harus tahu bagaimana menggunakan setiap fitur pada AFCS, tetapi mereka juga harus tahu cara mematikannya dan terbang tanpa AFCS. Mereka juga harus mematuhi jadwal perawatan yang ketat untuk memastikan semua sensor dan servo berada dalam kondisi yang baik.
Baris 177 ⟶ 174:
Permasalahan dengan sistem autopilot seperti itu sangat berpotensi menimbulkan kecelakaan pesawat walaupun hal tersebut terlihat tidak mungkin terjadi. Kenyataannya beberapa laporan menunjukkan bahwa sistem autopilot telah diputuskan sebelum pesawat tersebut menemui masalah.}}
== Modern Autopilot Systems ==
Banyak sistem autopilot modern mampu menerima data dari penerima Global Positioning System (GPS) yang terpasang pada pesawat. Penerima GPS dapat menetukan posisi pesawat di udara dengan mengkalkulasi jarak pesawat dari tiga atau lebih satelit yang terhubung dalam jaringan GPS. Dilengkapi dengan alat pemberi informasi posisi tersebut, autopilot dapat melakukan lebih dari menjaga pesawat tetap berada pada posisi dan ketinggian yang
Kebanyakan jet komersial telah memiliki kemampuan untuk melakukan perencanaan penerbangan walaupun hanya sesaat, bahkan pesawat-pesawat kecilpun telah dilengkapi dengan sistem autopilot yang canggih. New Cessna 182s dan 206s telah dilengkapi dengan Garmin G1000 integrated cockpit pada saat keluar dari dari pabrik, termasuk sebuah sistem autopilot elektronik digital (digital electronic autopilot) yang telah dikombinasikan dengan flight director (pengarah penerbangan). The Garmin G1000 pada dasarnya telah memiliki semua kemampuan tersebut, generasi terbaru pesawat eklektronik umum, teknologi yang dulunya hanya bisa dimimpikan oleh Wiley Post pada tahun 1933.
{{quote|Autopilot tidak hanya ditemukan pada pesawat terbang. Kapal laut juga memilikinya walaupun sistem autopilot pada kapal laut dikenali dengan nama yang berbeda. Beberapa kapten menyebut sistem autopilot kapalnya dengan "Metal Mike," sebuah nama sebutan yang muncul segera setelah Elmer Sperry menemukan gyrocompass.
Keberapa kapten kapal juga menyebut sistem autopilot pada kapal laut dengan "autohelmsman" (
==
* [[Autoland]]
* [[Autonomous aerobatic]]
== Referensi ==
{{reflist}}
{{commons category|Autopilots}}
{{wiktionary|autopilot}}
* [http://books.google.com/books?id=UOIDAAAAMBAJ&pg=PA858&dq=Junkers+stratosphere&hl=en&ei=4KgNTb33B8S4ngeYq9WjDg&sa=X&oi=book_result&ct=result&resnum=7&ved=0CD8Q6AEwBg#v=onepage&q=Junkers%20stratosphere&f=true "How Fast Can You Fly Safely", June 1933, Popular Mechanics] page 858 photo of Sperry ''Automatic Pilot'' and drawing of its basic functions in flight when set
* [http://www.navitron.co.uk/NT921_Autopilot.htm http://www.navitron.co.uk/NT921_Autopilot.htm]
{{Komponen pesawat terbang}}
[[Kategori:Avionik]]
|