Konten dihapus Konten ditambahkan
Hanamanteo (bicara | kontrib)
k Mengembalikan suntingan oleh Kwamikagami (bicara) ke revisi terakhir oleh InternetArchiveBot
Tag: Pengembalian Suntingan perangkat seluler Suntingan peramban seluler Suntingan seluler lanjutan
 
(175 revisi perantara oleh 82 pengguna tidak ditampilkan)
Baris 1:
{{redirect|Bumi|kegunaan lain|Bumi (disambiguasi)}}
{{About|planet}}
{{lindungidarianon2|small=yes}}
{{Infobox planet
| bgcolour = #c0c0ff
| name = Bumi
| symbol = [[FileBerkas:Earth symbol (small, bold).svg|25px24px|alt=🜨|Simbol astronomi Bumi]]
| image = [[ImageBerkas:Earth_Eastern_HemisphereThe Blue Marble (remastered).jpg|250px]]
| caption = Foto Bumi, diambil oleh [[NASA]]
| alt_names = Tellus/Telluris atau Terra,<ref group=catatan name="Terra" /> Gaia
| flag = {{flagicon|world}}
| epoch = [[J2000,0]]<ref group=catatan name=epoch/>
| aphelion = 152.098.232&nbsp;km<br> 1,01671388&nbsp;[[Satuan Astronomi|SAsa]]<ref group=catatan name=apsis/>
| perihelion = 147.098.290&nbsp;km<br> 0,98329134&nbsp;SAsa<ref group=catatan name=apsis/>
| semimajor = 149.598.261&nbsp;km<br> 1,00000261&nbsp;SAsa<ref name=standish_williams_iau/>
| eccentricity = 0,01671123<ref name=standish_williams_iau/>
| inclination = 7,155° ke [[ekuator]] [[Matahari]]<br>1,57869°<ref name=Allen294/> ke [[bidang invariabel]]
Baris 19 ⟶ 20:
| period = 365,256363004&nbsp;hari<ref name="IERS"/><br>1,000017421&nbsp;[[Tahun Julian (astronomi)|tahun]]
| avg_speed = 29,78&nbsp;km/s<ref name="earth_fact_sheet"/><br>107.200&nbsp;km/jam
| satellites = 1 alami&nbsp;([[Bulan]]),<br> 1.070 buatan ({{as of|2013|10|24|lc=on}})<ref>{{cite web|url=http://www.spaceref.com/news/viewpr.html?pid=4008|title=Reentry Assessment&nbsp;– US Space Command Fact Sheet|author=[[US Space Command]]|date=March 1, 2001|publisher=SpaceRef Interactive|accessdate=2011-05-07}}{{Pranala mati|date=Juni 2023 |bot=InternetArchiveBot |fix-attempted=yes }}</ref>
| physical_characteristics = yes
| flattening = 0,0033528<ref name=iers/>
Baris 25 ⟶ 26:
| polar_radius = 6.356,8&nbsp;km<ref name=cazenave_ahrens1995/>
| mean_radius = 6.371,0&nbsp;km<ref name=hbcp2000/>
| circumference = 40.075,017&nbsp;km&nbsp;([[khatulistiwa]])<ref name="WGS-84">[[World Geodetic System]] (''WGS-84''). [http://earth-info.nga.mil/GandG/wgs84/ Available online] {{Webarchive|url=https://web.archive.org/web/20200311023739/https://earth-info.nga.mil/GandG/wgs84/ |date=2020-03-11 }} from [[National Geospatial-Intelligence Agency]].</ref><br>40.007,86&nbsp;km&nbsp;([[meridian]])<ref name="WGS-84-2"/><ref name="circ"> Keliling Bumi (hampir) tepat 40.000 km karena [[meter]] dikalibrasi berdasarkan ketepatannnya pada pengukuran ini&nbsp;– lebih khusus, 1/10 kesejuta dari jarak antara kutub dan khatulistiwa.</ref>
| surface_area = 510.072.000&nbsp;km<sup>2</sup><ref name="Pidwirny 2006_8" /><ref name=cia /><ref group=catatan name=surfacecover/>
{{nowrap|148.940.000 km<sup>2</sup> daratan (29,2 %)}}<br>
{{nowrap|361.132.000 km<sup>2</sup> perairan (70,8 %)}}
| volume = [[Volume Bumi|1,08321{{e|12}}]]&nbsp;km<sup>3</sup><ref name="earth_fact_sheet"/>
| mass = 5,97219{{e|24}}&nbsp;kg<ref>{{cite web |url=http://solarsystem.nasa.gov/planets/profile.cfm?Object=Earth&Display=Facts |title=Solar System Exploration: Earth: Facts & Figures |work=NASA |date=13 Dec 2012 |accessdate=2012-01-22 |archive-date=2015-11-13 |archive-url=https://web.archive.org/web/20151113022547/http://solarsystem.nasa.gov/planets/profile.cfm?Object=Earth |dead-url=yes }}</ref><br />
3,0{{e|-6}}&nbsp;Matahari
| density = 5,515&nbsp;g/cm<sup>3</sup><ref name="earth_fact_sheet"/>
| surface_grav = [[Gravitasi Bumi|9,780327]] [[meter per sekon kuadrat|m/s<sup>2</sup>]]<ref name="yoder12"/><br>0,99732&nbsp;''[[gaya-g|g]]''
| escape_velocity = 11,186&nbsp;km/s<ref name="earth_fact_sheet"/>
| sidereal_day = 0,99726968&nbsp;d<ref name=Allen296 /> <br>23{{smallsup|hj}}&nbsp;56{{smallsup|m}}&nbsp;4,100{{smallsup|sd}}
| rot_velocity = {{convert|1674,4| km/h|m/s|abbr=on}}jam<ref name="Cox2000"/>
| axial_tilt = 23°26'21",4119<ref name="IERS"/>
| albedo = 0,367 ([[Albedo geometris|Geometri]])<ref name="earth_fact_sheet"/><br />
Baris 54 ⟶ 55:
|catatan = no
}}
'''Bumi''' adalah [[planet]] terdekat ketiga dari [[Matahari]] yang merupakan planet [[Kepadatan|terpadat]] dan terbesar kelima dari delapan planet dalam [[Tata Surya]]. Bumi juga merupakan planet terbesar dari empat [[planet kebumian]] di Tata Surya. Bumi terkadang disebut dengan [[dunia]] atau [["''Planet Biru]]''".<ref>{{Cite nameweb|title="blueplanet"By the Numbers {{!}} Earth|url=https://solarsystem.nasa.gov/planets/earth/by-the-numbers|website=NASA Solar System Exploration|access-date=2023-09-02}}</ref>
 
Bumi terbentuk sekitar [[Usia Bumi|4,54 miliar tahun]] yang lalu, dan [[Abiogenesis|kehidupan sudah muncul]] di permukaannya padapaling tidak sekitar 3,5 miliar tahun pertamayang lalu.<ref name="age_earth1" /> [[Biosfer]] Bumi kemudian secara perlahan mengubah [[Atmosfer Bumi|atmosfer]] dan kondisi [[Komponen abiotika|fisik dasar]] lainnya, yang memungkinkan terjadinya perkembangbiakan [[Organisme aerob|organisme]] serta pembentukan [[lapisan ozon]], yang bersama [[medan magnet Bumi]] menghalangi [[cahaya matahari|radiasi surya]] berbahaya dan mengizinkan [[makhluk hidup ]] mikroskopis untuk berkembang biak dengan aman di daratan.<ref name="Harrison 2002" /> [[Geofisika|Sifat fisik]], [[Sejarah geologi Bumi|sejarah geologi]], dan orbit Bumi memungkinkan kehidupan untuk bisa terus bertahan.
 
[[Litosfer]] Bumi terbagi menjadi beberapa segmen kaku, atau [[lempeng tektonik]], yang mengalami pergerakan di seluruh permukaan Bumi selama [[Skala waktu geologi|jutaan tahun]]. Lebih dari 70% permukaan Bumi ditutupi oleh air,<ref>{{cite web |url=http://www.noaa.gov/ocean.html |title=NOAA&nbsp;– Ocean |publisher=Noaa.gov |date= |accessdate=2013-05-03 |archive-date=2013-04-24 |archive-url=https://web.archive.org/web/20130424102601/http://www.noaa.gov/ocean.html |dead-url=yes }}</ref> dan sisanya terdiri dari benua dan pulau-pulau yang memiliki banyak danau dan sumber air lainnya yang bersumbangsih terhadap pembentukan [[hidrosfer]]. [[Kutub geografi|Kutub]] Bumi sebagian besarnya tertutup es; es padat di [[lapisan es Antarktika]] dan [[es laut]] di [[paket es kutub]]. [[Struktur Bumi|Interior Bumi]] masih tetap aktif, dengan [[inti dalam]] terdiri dari besi padat, sedangkan [[inti luar]] berupa [[fluida]] yang menciptakan medan magnet, dan lapisan tebal yang relatif padat di bagian [[Mantel (geologi)|mantel]].
 
Bumi [[Gravitasi|berinteraksi secara gravitasi]] dengan objek lainnya di luar angkasa, terutama Matahari dan [[Bulan]]. Ketika mengelilingi Matahari dalam satu orbit, Bumi berputar pada sumbunya sebanyak 366,26 kali, yang menciptakan 365,26 [[Waktu matahari|hari matahari]] atau satu [[tahun sideris]].<ref group=catatan name=sidereal_solar/> Perputaran Bumi pada sumbunya [[Kemiringan sumbu|miring]] 23,4° dari [[serenjang]] [[Bidang orbit (astronomi)|bidang orbit]], yang menyebabkan perbedaan musim di permukaan Bumi dengan periode satu [[tahun tropis]] (365,24 hari matahari).<ref name=yoder1995/> Bulan adalah satu-satunya [[satelit alami]] Bumi, yang mulai mengorbit Bumi sekitar {{nowrap|4,53 miliar tahun yang lalu}}. Interaksi gravitasi antara Bulan dengan Bumi merangsang terjadinya [[pasang laut]], menstabilkan kemiringan sumbu, dan secara bertahap memperlambat rotasi Bumi.
Baris 64 ⟶ 65:
Bumi adalah tempat tinggal bagi jutaan [[makhluk hidup]], termasuk [[manusia]].<ref name=science_241_4872_1441 /> Sumber daya [[mineral]] Bumi dan produk-produk [[biosfer]] lainnya bersumbangsih terhadap penyediaan sumber daya untuk mendukung [[Populasi dunia|populasi manusia global]].<ref name="World_Population_Clock"/> Wilayah Bumi yang dihuni manusia dikelompokkan menjadi 200 [[negara berdaulat]], yang saling berinteraksi satu sama lain melalui diplomasi, pelancongan, perdagangan, dan aksi militer.
 
== Nama dan etimologi ==
Dalam bahasa Inggris modern, kata benda ''earth'' dikembangkan dari kata [[bahasa Inggris Pertengahan]] ''erthe'' (dicatat pada 1137), yang berasal dari kata [[bahasa Inggris Kuno]] ''eorthe'' (sebelum 725), sedangkan kata itu sendiri berasal dari kata [[Proto-Jermanik]] *''erthō''. ''Earth'' memiliki kata kerabat pada semua [[Rumpun bahasa Jermanik|bahasa Jermanik]] lainnya, termasuk ''aarde'' dalam [[bahasa Belanda]], ''Erde'' dalam [[bahasa Jerman]], dan ''jord'' dalam [[bahasa Swedia]], [[bahasa Denmark|Denmark]], dan [[bahasa Norwegia|Norwegia]].<ref name="BARNHART228-229">[[Robert Barnhart|Barnhart, Robert K.]] (1995). Originally. from a Semitic (Arabic/Hebrew) root: أرض| aarth-or, ארץ aerets (Hebrew) is the word for land, country and Earth. As per later Germanic roots, the Barnhart Concise Dictionary of Etymology, pages 228–229. [[HarperCollins]]. ISBN 0-06-270084-7</ref> ''Earth'' adalah perumpamaan untuk dewi [[paganisme Jermanik]] (atau [[Jörð]] dalam [[mitologi Norse]], ibu dari dewa [[Thor]]).<ref name="SIMEK179">[[Rudolf Simek|Simek, Rudolf]] (2007) translated by Angela Hall. ''Dictionary of Northern Mythology'', page 179. [[Boydell & Brewer|D.S. Brewer]] ISBN 0-85991-513-1</ref>
 
Dalam [[bahasa Indonesia]], kata ''bumi'' berasal dari [[bahasa Sanskerta]] ''bhumi'', yang berarti tanah, dan selalu ditulis dengan huruf kapital ("Bumi"), untuk merujuk pada planet Bumi, sementara "bumi" dengan huruf kecil merujuk pada permukaan dunia, atau tanah.<ref>{{KBBI|Lihat definisi kata "bumi}}" di [http://kamus.sabda.org/kamus/bumi KBBI].</ref>.
 
== Komposisi dan struktur ==
{{Main|Ilmu BumiGeologi}}
{{Further|Tabel karakteristik fisik Bumi}}
Bumi tergolong [[planet kebumian]] yang umumnya terdiri dari bebatuan, bukannya [[raksasa gas]] seperti [[YupiterJupiter]]. Bumi adalah planet terbesar dari empat planet kebumian lainnya menurut ukuran dan massa. Dari keempat planet tersebut, Bumi merupakan planet dengan kepadatan tertinggi, [[gravitasi permukaan]] tertinggi, medan magnet terkuat, dan rotasi tercepat,<ref name=stern20011125/> dan diperkirakan juga merupakan satu-satunya planet dengan [[tektonik lempeng]] yang aktif.<ref name=science288_5473_2002/>
 
=== Bentuk ===
{{Main|Bentuk Bumi}}
[[FileBerkas:ISS034E016601 - Stratocumulus Clouds - Pacific Ocean.jpg|thumbjmpl|leftkiri|300px|Awan stratokumulus di atas Pasifik, dilihat dari orbit.]]
Bentuk Bumi kira-kira menyerupai [[sferoid|sferoid pepat]], bola yang bentuknya tertekan pipih di sepanjang sumbu dari kutub ke kutub sehingga terdapat [[tonjolan khatulistiwa|tonjolan]] di sekitar [[khatulistiwa]].<ref name=milbert_smith96/> Tonjolan ini muncul akibat [[rotasi]] Bumi, yang menyebabkan diameter khatulistiwa {{val|43|ul=km}} (kilometer) lebih besar dari diameter [[Kutub geografi|kutub]] ke kutub.<ref name="ngdc2006"/> Karena hal ini, titik terjauh permukaan Bumi dari pusat Bumi adalah gunung api [[Gunung Chimborazo|Chimborazo]] di [[Ekuador]], yang berjarak 6.384 kilometer dari pusat Bumi, atau sekitar 2 kilometer lebih jauh jika dibandingkan dengan [[Gunung Everest]].<ref>[http://www.npr.org/templates/story/story.php?storyId=9428163 The 'Highest' Spot on Earth?] NPR.org Consultado el 25-07-2010</ref> Diameter rata-rata bulatan Bumi adalah {{val|12742|u=km}}, atau kira-kira setara dengan 40.000 &nbsp;km /[[pi|π]], karena satuan [[meter]] pada awalnya dihitung sebagai 1/10.000.000 jarak dari khatulistiwa ke [[Kutub Utara]] melewati [[Paris]], [[PerancisPrancis]].<ref name=nist_length2000/>
 
[[Topografi]] Bumi mengalami deviasi dari bentuk sferoid ideal, meskipun dalam skala global deviasi ini tergolong kecil: Bumi memiliki tingkat [[Toleransi (teknik)|toleransi]] sekitar 584, atau 0,17% dari [[sferoid]] sempurna, lebih kecil jika dibandingkan dengan tingkat toleransi pada [[bola biliar]] (0,22%).<ref name=wpba2001/> Deviasi tertinggi dan terendah pada permukaan Bumi terdapat di Gunung Everest (8.848&nbsp;m di atas permukaan laut) dan [[Palung Mariana]] ({{val|10911|ul=m}} di bawah permukaan laut). Karena adanya tonjolan khatulistiwa, lokasi di permukaan Bumi yang berada paling jauh dari pusat Bumi adalah puncak Chimborazo di Ekuador dan [[Huascarán]] di [[Peru]].<ref name=ps20_5_16/><ref name=lancet365_9462_831/><ref name=tall_tales/>
Baris 94 ⟶ 95:
|style="text-align: right;"|48.6%
|-
|[[aluminium dioksidaoksida|Alumina]]
|style="text-align: center;"|Al<sub>2</sub>O<sub>3</sub>
|style="text-align: right;"|15.2%
Baris 154 ⟶ 155:
|}
 
=== Komposisi kimiawi ===
{{See also|Kelimpahan unsur kimia Bumi}}
 
Baris 161 ⟶ 162:
Ahli geokimia [[Frank Wigglesworth Clarke|F. W. Clarke]] menghitung lebih dari 47% [[kerak (geologi)|kerak]] Bumi mengandung oksigen. Konstituen batuan yang umumnya terdapat pada kerak Bumi hampir semuanya merupakan senyawa oksida; klorin, belerang, dan [[fluor]] adalah tiga pengecualian, dan jumlah total kandungan unsur ini dalam batuan biasanya kurang dari 1%. Oksida utama yang terkandung dalam kerak Bumi adalah silika, alumina, besi oksida, kapur, magnesia, kalium, dan soda. Silika pada umumnya berfungsi sebagai [[asam]], yang membentuk silikat, dan mineral paling umum yang terdapat pada [[batuan beku]] adalah senyawa ini. Berdasarkan analisisnya terhadap 1.672 jenis batuan di kerak Bumi, Clarke menyimpulkan bahwa 99,22% kerak Bumi terdiri dari 11 oksida (lihat tabel di sebelah kanan).<ref>{{EB1911|title=Petrology |inline=1}}</ref>
 
=== Struktur dalam ===
{{Main|Struktur Bumi}}
Interior Bumi, seperti halnya planet kebumian lainnya, dibagi menjadi sejumlah lapisan menurut kandungan [[fisika]] atau kimianya ([[reologi]]). Namun, tidak seperti planet kebumian lainnya, Bumi memiliki inti luar dan inti dalam yang berbeda. Lapisan luar Bumi secara kimiawi berupa kerak padat [[Mineral silikat|silikat]] yang diselimuti oleh mantel [[viskositas|viskose]] padat. Kerak Bumi dipisahkan dari mantel oleh [[diskontinuitas Mohorovičić]], dengan ketebalan kerak yang bervariasi; ketebalan rata-ratanya adalah {{val|6|ul=km}} di bawah lautan dan 30-{{val|50|u=km}} di bawah daratan. Kerak Bumi, serta bagian kaku dan dingin di puncak [[mantel atas]], secara kolektif dikenal dengan [[litosfer]], dan pada lapisan inilah [[tektonika lempeng]] terjadi. Di bawah litosfer terdapat [[astenosfer]], lapisan dengan tingkat viskositas yang relatif rendah dan menjadi tempat melekat bagi litosfer. Perubahan penting struktur kristal di dalam mantel terjadi pada kedalaman 410 dan {{val|660|ul=km}} di bawah permukaan Bumi, yang juga mencakup [[Zona transisi (Bumi)|zona transisi]] yang memisahkan mantel atas dengan mantel bawah. Di bawah mantel, terdapat fluida [[inti luar]] dengan viskositas yang sangat rendah di atas [[inti dalam]].<ref name=tanimoto_ahrens1995/> Inti dalam Bumi mengalami perputaran dengan [[kecepatan sudut]] yang sedikit lebih tinggi jika dibandingkan dengan bagian planet lainnya, sekitar 0,1-0,5° per tahun.<ref name=science309_5739_1313/>
{| class="wikitable" style="margin:4px; margin-right:0; width:100%; text-align:center;"
|+ Lapisan geologi Bumi<ref name=pnas76_9_4192/>
|-
! rowspan="8" style="font-size:smaller; text-align:center; padding:0;"|[[FileBerkas:Earth-crust-cutaway-englishid.svg|250px|centerpus]]<br>Penampang Bumi dari inti ke eksosfer.
!Kedalaman<ref name=robertson2001/><br><span style="font-size: smaller;">km</span>
!style="vertical-align: bottom;"|Lapisan komponen
Baris 201 ⟶ 202:
|}
 
=== Panas ===
[[Panas dalam]] Bumi berasal dari perpaduan antara [[Energi pengikatan gravitasi|panas endapan dari akresi planet]] (sekitar 20%) dan panas yang dihasilkan oleh [[peluruhan radioaktif]] (80%).<ref name="turcotte"/> [[Isotop]] penghasil panas utama Bumi adalah [[Kalium|kalium-40]], [[Uranium|uranium-238]], [[uranium-235]], dan [[Torium|torium-232]].<ref name=sanders20031210/> Di pusat Bumi, suhu bisa mencapai {{convert|6000|6.000&nbsp;°C}},<ref>{{Cite web|url=http://www.esrf.eu/news/general/Earth-Centerold/general-Hotter2010/Earthwhen-Centrethe-Hotterearth-mantle-finds-its-core|title=When the Earth mantle finds its core|website=www.esrf.eu}}</ref> dan tekanannya mencapai 360&nbsp;[[GPa]].<ref name=ptrsl360_1795_1227/> Karena sebagian besar panas Bumi dihasilkan oleh peluruhan radioaktif, para ilmuwan percaya bahwa pada awal [[sejarah Bumi]], sebelum isotop dengan usia pendek terkuras habis, produksi panas Bumi yang dihasilkan jauh lebih tinggi jika dibandingkan dengan saat ini. Panas yang dihasilkan pada masa itu diperkirakan dua kali lebih besar daripada saat ini, kira-kira 3 miliar tahun yang lalu,<ref name="turcotte" /> dan hal tersebut akan meningkatkan gradien suhu di dalam Bumi, meningkatkan tingkat [[konveksi mantel]] dan tektonik lempeng, serta memungkinkan pembentukan [[batuan beku]] seperti [[komatiites]], yang tidak bisa terbentuk pada masa kini.<ref name=epsl121_1/>
 
{| class="wikitable" style="text-align:center;"
Baris 239 ⟶ 240:
Rata-rata pelepasan panas Bumi adalah {{nowrap|87 mW m<sup>−2</sup>}}, dan {{nowrap|4.42 × 10<sup>13</sup> W}} untuk panas global.<ref name=jg31_3_267/> Sebagian energi panas di dalam inti Bumi diangkut menuju kerak oleh [[bulu mantel]]; bentuk konveksi yang terdiri dari batuan bersuhu tinggi yang mengalir ke atas. Bulu mantel ini mampu menghasilkan [[bintik panas (geologi)|bintik panas]] dan [[basal banjir]].<ref name=science246_4926_103/> Panas Bumi yang selebihnya dilepaskan melalui lempeng tektonik oleh mantel yang terhubung dengan [[punggung tengah samudra]]. Pelepasan panas terakhir dilakukan melalui konduksi [[litosfer]], yang umumnya terjadi di samudra karena kerak di sana jauh lebih tipis jika dibandingkan dengan kerak benua.<ref name="heat loss" />
 
=== Lempeng tektonik ===
{| class="wikitable" style="float:right; margin-left:1em;"
|+ [[Daftar lempeng tektonik|Lempeng utama Bumi]]<ref name=brown_wohletz2005/>
|-
|colspan="2" style="font-size: smaller; text-align: center;"|[[FileBerkas:Tectonic plates (empty).svg|250px|alt=Shows the extent and boundaries of tectonic plates, with superimposed outlines of the continents they support]]
|-
!Nama lempeng
Baris 262 ⟶ 263:
| {{legend|#ad82b0|[[Lempeng Amerika Selatan]]}} ||style="text-align: center;"| 43.6
|}
{{Main|TektonikTektonika lempeng}}
Lapisan luar Bumi yang berbentuk lapisan kaku, disebut dengan litosfer, terpecah menjadi potongan-potongan yang disebut dengan lempeng tektonik. Lempeng-lempeng ini merupakan segmen kaku yang saling berhubungan dan bergerak pada salah satu dari tiga jenis batas lempeng. Ketiga batas lempeng tersebut adalah [[Batas konvergen|batas konvergen]], tempat dua lempeng bertumbukan; [[Batas divergen|batas divergen]], tempat dua lempeng saling menjauh; dan [[batas peralihan]], tempat dua lempeng saling bersilangan secara lateral. [[Gempa bumi]], aktivitas [[gunung berapi]], [[orografi|pembentukan gunung]], dan pembentukan [[palung|palung laut]] terjadi di sepanjang batas lempeng ini.<ref name=kious_tilling1999/> Lempeng tektonik berada di atas astenosfer, lapisan mantel yang bentuknya padat, tetapi tidak begitu kental, yang bisa mengalir dan bergerak bersama lempeng,<ref name=seligman2008/> dan pergerakan ini disertai dengan pola konveksi di dalam mantel Bumi.
 
Karena lempeng tektonik berpindah di seluruh Bumi, lantai samudra mengalami [[Subduksi|penunjaman]] di bawah tepi utama lempeng pada batas konvergen. Pada saat yang bersamaan, material mantel pada batas divergen membentuk [[punggung tengah samudra]]. Perpaduan kedua proses ini secara berkelanjutan terus mendaur ulang [[kerak samudra]] kembali ke dalam mantel. Karena proses daur ulang ini, sebagian besar lantai samudra berusia kurang dari {{val|100|u=juta tahun}}. Kerak samudra tertua berlokasi di Pasifik Barat, yang usianya diperkirakan {{val|200|u=juta tahun}}.<ref name=duennebier1999/><ref name=noaa20070307/> Sebagai perbandingan, kerak benua tertua berusia {{val|4030|u=juta tahun}}.<ref name=cmp134_3/>
Baris 269 ⟶ 270:
Tujuh lempeng utama di Bumi adalah [[Lempeng Pasifik]], [[Lempeng Amerika Utara|Amerika Utara]], [[Lempeng Eurasia|Eurasia]], [[Lempeng Afrika|Afrika]], [[Lempeng Antarktika|Antarktika]], [[Lempeng Indo-Australia]], dan [[Lempeng Amerika Selatan|Amerika Selatan]]. Lempeng terkemuka lainnya adalah [[Lempeng Arab]], [[Lempeng Karibia]], [[Lempeng Nazca]] di pantai barat Amerika Selatan, dan [[Lempeng Scotia]] di [[Samudra Atlantik]] selatan. Lempeng Australia menyatu dengan Lempeng India kira-kira 50 sampai {{val|55|u=juta tahun yang lalu}}. Lempeng dengan pergerakan tercepat adalah lempeng samudra; [[Lempeng Cocos]] bergerak dengan laju kecepatan 75&nbsp;mm/tahun,<ref name=podp2000/> dan Lempeng Pasifik bergerak 52–69&nbsp;mm/tahun. Sedangkan lempeng dengan pergerakan terlambat adalah [[Lempeng Eurasia]], dengan laju pergerakan sekitar 21&nbsp;mm/tahun.<ref name=gps_time_series/>
 
=== Permukaan ===
{{Main|Bentang alam|Lokasi paling ekstrem di dunia}}
{{Pie chart
Baris 288 ⟶ 289:
|label7 = Busur pulau vulkanik, palung laut, gunung api dasar laut, dan perbukitan}}
 
Permukaan Bumi bervariasi dari tempat ke tempat. Sekitar 70,8%<ref name="Pidwirny 2006_8"/> permukaan Bumi ditutupi oleh [[air]], dan terdapat banyak [[landas benua]] di bawah permukaan laut. Luas permukaan Bumi yang ditutupi oleh air setara dengan {{val|361.132|end=&nbsp;million|ul=km2}} (139,43 juta sq mi).<ref>{{cite web |url=https://www.cia.gov/library/publications/the-world-factbook/geos/xx.html |title=CIA&nbsp;– The World Factbook |publisher=Cia.gov |date= |accessdate=2012-11-02 |archive-date=2010-01-05 |archive-url=https://web.archive.org/web/20100105171656/https://www.cia.gov/library/publications/the-world-factbook/geos/xx.html |dead-url=yes }}</ref> Permukaan Bumi yang terendam memiliki bentang pegunungan, termasuk rangkaian punggung tengah samudra dan gunung api bawah laut,<ref name="ngdc2006" /> bentang lainnya adalah [[palung|palung laut]], [[lembah bawah laut]], [[dataran tinggi samudra]], dan [[dataran abisal]]. Sisanya, 29,2% ({{val|148.94|end=&nbsp;million|ul=km2}} atau 57,51 juta sq mi) permukaan Bumi dilingkupi oleh daratan, yang terdiri dari pegunungan, padang gurun, dataran tinggi, pesisir, dan [[geomorfologi]] lainnya.
 
Permukaan Bumi mengalami pembentukan kembali pada periode waktu geologi karena aktivitas [[erosi dan tektonik|tektonik dan erosi]]. Permukaan Bumi yang terbentuk atau mengalami deformasi akibat tektonika lempeng merupakan permukaan yang mengalami [[pelapukan]] oleh [[curah hujan]], siklus termal, dan pengaruh kimia. [[Glasial|Glasiasi]], [[erosi pantai]], pembentukan [[terumbu karang]], dan tubrukan [[meteorit]] besar<ref name=kring/> merupakan beberapa peristiwa yang memicu pembentukan kembali lanskap permukaan Bumi.
 
[[FileBerkas:AYool topography 15min.png|300px|leftkiri|thumbjmpl|[[Bentang alam|Altimetri]] dan [[batimetri]] Bumi saat ini. Data dari [http://www.ngdc.noaa.gov/mgg/topo/ TerrainBase Digital Terrain Model] [[Pusat Data Geofisika Nasional]].]]
 
[[Kerak benua]] terdiri dari material dengan kepadatan rendah seperti [[batuan beku]] [[granit]] dan [[andesit]]. Batuan dengan persentase kecil adalah [[basal]], batuan vulkanik padat yang merupakan konstituen utama lantai samudra.<ref name=layers_earth/> [[Batuan sedimen]] terbentuk dari akumulasi sedimen yang terpadatkan. Hampir 75% permukaan benua ditutupi oleh batuan sedimen, meskipun batuan itu sendiri hanya membentuk 5% bagian kerak Bumi.<ref name=jessey/> Batuan ketiga yang paling umum terdapat di permukaan Bumi adalah [[batuan metamorf]], yang terbentuk dari transformasi batuan yang sudah ada akibat tekanan tinggi, suhu tinggi, atau keduanya. Mineral silikat yang ketersediaannya paling melimpah di permukaan Bumi adalah [[kuarsa]], [[feldspar]], [[amfibol]], [[mika]], [[piroksen]], dan [[olivin]].<ref name=de_pater_lissauer2010/> Sedangkan mineral karbonat paling umum adalah [[kalsit]] (ditemukan pada [[batu kapur]] dan [[dolomit]]).<ref name=wekn_bulakh2004/>
 
[[Pedosfer]] adalah lapisan terluar Bumi yang menjadi tempat terjadinya [[pedogenesis|proses pembentukan tanah]]. Lapisan ini terletak pada antarmuka [[litosfer]], atmosfer, [[hidrosfer]], dan [[biosfer]]. Total permukaan tanah saat ini adalah 13,31% dari luas total permukaan Bumi, dan dari jumlah tersebut, hanya 4,71% yang ditanami secara permanen.<ref name=cia/> Hampir 40% permukaan tanah dimanfaatkan sebagai lahan pertanian dan padang rumput, dengan rincian 1,3{{e|7}}&nbsp;km<sup>2</sup> lahan pertanian dan 3,4{{e|7}}&nbsp;km<sup>2</sup> padang rumput.<ref name=fao1994/>
 
Ketinggian permukaan tanah Bumi bervariasi. Titik terendah berada pada ketinggian −418&nbsp;m di [[Laut Mati]], sedangkan titik tertinggi adalah 8.848&nbsp;m di puncak [[Gunung Everest]]. Ketinggian rata-rata permukaan tanah dihitung dari permukaan laut adalah 840&nbsp;m.<ref name=sverdrup/>
 
Secara logis, Bumi dibagi menjadi Belahan Utara dan Selatan yang berpusat di masing-masing kutub. Akan tetapiNamun, Bumi secara tidak resmi juga dibagi menjadi [[Belahan Bumi Barat]] dan [[Belahan Bumi Timur|Timur]]. Permukaan Bumi secara tradisional dibagi menjadi tujuh benua dan berbagai [[laut]]. Setelah manusia menghuni dan mengelola Bumi, hampir semua permukaan dibagi menjadi negara-negara. Hingga tahun 2013, terdapat 196 negara berdaulat dengan jumlah penduduk sekitar 7 miliar yang menghuni permukaan Bumi.<ref>[{{Cite web |url=http://geography.about.com/cs/countries/a/numbercountries.htm |title=Number of countries] |access-date=2014-02-25 |archive-date=2014-09-23 |archive-url=https://web.archive.org/web/20140923173503/http://geography.about.com/cs/countries/a/numbercountries.htm |dead-url=yes }}</ref>
 
=== Hidrosfer ===
{{Main|Hidrosfer}}
[[FileBerkas:Earth elevation histogram 2.svg|thumbjmpl|300px|Histogram ketinggian permukaan Bumi.]]
Ketersediaan air yang begitu banyak di permukaan Bumi merupakan hal unik yang membedakan "Planet Biru" dengan planet lainnya di [[Tata Surya]]. [[Hidrosfer]] Bumi pada umumnya terdiri dari lautan, namun secara teknis juga mencakup semua [[perairan]] yang terdapat di permukaan Bumi, termasuk [[danau]], [[sungai]], laut pedalaman, dan air bawah tanah di kedalaman 2.000&nbsp;m. Perairan terdalam dari permukaan Bumi adalah [[Challenger Deep]] di [[Palung Mariana]], [[Samudra Pasifik]], dengan kedalaman 10.911,4&nbsp;m di bawah permukaan [[laut]].<ref group="catatan" name=trench_depth/><ref name=kaiko7000/>
 
Massa lautan kira-kira 1,35{{e|18}}&nbsp;[[metrik ton]], atau sekitar 1/4400 dari massa total Bumi. Lautan mencakup area seluas {{val|3.618|e=8|ul=km2}}, dengan kedalaman rata-rata {{val|3682|ul=m}}, dan volume air sekitar {{val|1.332|e=9|ul=km3}}.<ref name=ocean23_2_112/> Jika daratan di permukaan Bumi tersebar merata, maka ketinggian air akan naik lebih dari 2,7&nbsp;km.<ref group=catatan>Luas total permukaan Bumi adalah {{val|5.1|e=8|ul=km2}}. To first approximation, the average depth would be the ratio of the two, or 2.7&nbsp;km.</ref> Sekitar 97,5% perairan Bumi adalah air asin, sedangkan 2,5% sisanya adalah air tawar. Sekitar 68,7% air tawar yang terdapat di permukaan Bumi pada saat ini adalah es, sedangkan selebihnya membentuk danau, sungai, mata air, dan sebagainya.<ref name=shiklomanov_et_al_1999/>
Baris 311 ⟶ 312:
[[Salinitas|Tingkat keasinan]] rata-rata lautan di Bumi adalah 35&nbsp;gram garam per kilogram air laut (3,5% garam).<ref name=kennish2001/> Sebagian besar garam ini dihasilkan oleh aktivitas vulkanis atau hasil ekstraksi batuan beku.<ref name=mullen2002/> Lautan juga menjadi reservoir bagi gas atmosfer terlarut, yang keberadaannya sangat penting bagi kelangsungan hidup sebagian besar organisme air.<ref name=natsci_oxy4/> Air laut memiliki pengaruh besar terhadap iklim dunia; lautan berfungsi sebagai [[reservoir panas]] utama.<ref name=michon2006/> Perubahan suhu di lautan juga bisa menyebabkan perubahan cuaca di berbagai belahan dunia, misalnya [[El Niño–Osilasi Selatan]].<ref name=sample2005/>
 
=== Atmosfer ===
{{Main|Atmosfer Bumi}}
[[FileBerkas:EarthinuvfrommoonEarth in ultraviolet from the Moon (S72-40821).jpg|thumbjmpl|Foto yang memperlihatkan bagaimana Bumi bersinar dalam cahaya [[ultraungu]]. ]]
Rata-rata [[tekanan atmosfer]] di permukaan Bumi adalah 101,325&nbsp;[[kPa]], dengan [[ketingggian skala]] sekitar 5&nbsp;km.<ref name="earth_fact_sheet"/> Atmosfer mengandung 78% [[nitrogen]] dan 21% [[oksigen]], selebihnya adalah uap air, [[karbon dioksida]], dan molekul gas lainnya. Ketinggian [[troposfer]] beragam menurut garis lintang, berkisar antara 8&nbsp;km di wilayah kutub hingga 17&nbsp;km di wilayah khatulistiwa, dan beberapa variasi yang diakibatkan oleh faktor musim dan cuaca.<ref name=geerts_linacre97/>
 
[[Biosfer]] Bumi secara perlahan telah memermak komposisi [[atmosfer]]. [[Evolusi Oksigen|Fotosintesis oksigenik]] berevolusi {{val|2.7|u=miliar tahun yang lalu}}, yang [[Peristiwa Oksigenasi Besar|membentuk]] atmosfer nitrogen-oksigen utama saat ini.<ref name="NYT-20131003" /> Peristiwa ini memungkinkan terjadinya proliferasi [[organisme aerobik]], serta pembentukan [[lapisan ozon]] yang menghalangi [[sinar matahari|radiasi surya]] [[ultraungu]] memasuki Bumi dan menjamin kelangsungan kehidupan di darat. Fungsi atmosfer lainnya yang penting bagi kehidupan di Bumi adalah mengangkut uap air, menyediakan gas bernilai guna, membakar [[meteor]] berukuran kecil sebelum menghantam permukaan Bumi, dan memoderatori suhu.<ref name="atmosphere"/> Fenomena yang terakhir dikenal dengan [[efek rumah kaca]]; proses penangkapan energi panas yang dipancarkan dari permukaan Bumi pada atmosfer sehingga meningkatkan suhu rata-rata. Uap air, karbon dioksida, metana, dan ozon merupakan [[gas rumah kaca]] utama pada atmosfer Bumi. Tanpa pemancaran panas ini, suhu rata-rata di permukaan Bumi akan mencapai −18&nbsp;°C, berbeda jauh dengan suhu rata-rata saat ini (+15&nbsp;°C), dan kehidupan kemungkinan besar tidak akan bisa bertahan.<ref name="Pidwirny2006_7" />
 
==== Cuaca dan iklim ====
{{Main|Cuaca|Iklim}}
[[FileBerkas:MODIS Map.jpg|thumbjmpl|Foto satelit [[tudung awan]] di Bumi menggunakan [[Moderate-Resolution Imaging Spectroradiometer|MRIS]] [[NASA]].]]
 
Atmosfer Bumi tidak memiliki batas pasti, secara perlahan menipis dan mengabur ke angkasa luar. Tiga perempat massa atmosfer berada pada ketinggian 11 kilometer dari permukaan Bumi. Lapisan terbawah ini disebut dengan [[troposfer]]. Energi dari Matahari memanaskan lapisan ini, serta permukaan di bawahnya, yang menyebabkan terjadinya pemuaian udara. Udara pada lapisan ini kemudian bergerak naik dan digantikan oleh udara dingin dengan kelembaban yang lebih tinggi. Akibatnya, terjadi [[sirkulasi atmosferik]] yang memicu pembentukan [[cuaca]] dan [[iklim]] melalui pendistribusian kembali energi panas.<ref name="moran2005"/>
Baris 326 ⟶ 327:
Dampak utama sirkulasi atmosferik adalah terjadinya [[angin pasat]] di wilayah khatulistiwa yang berada pada garis lintang 30° dan [[angin barat]] di wilayah-wilayah lintang tengah antara 30° dan 60°.<ref name="berger2002"/> Arus laut juga menjadi faktor penting dalam menentukan iklim, terutama [[sirkulasi termohalin]] yang menyebarkan energi panas dari lautan di khatulistiwa ke wilayah [[kutub geografi|kutub]].<ref name=rahmstorf2003/>
 
[[Uap air]] yang dihasilkan melalui penguapan di permukaan Bumi diangkut oleh pola sirkulasi di atmosfer. Saat atmosfer melakukan pengangkatan udara hangat dan lembablembap, uap air akan mengalami [[kondensasi]] dan mengendap ke permukaan Bumi melalui proses [[presipitasi (meteorologi)|presipitasi]].<ref name="moran2005" /> Air yang diturunkan ke permukaan Bumi dalam bentuk [[hujan]] kemudian diangkut menuju ketinggian yang lebih rendah oleh [[sungai]] dan biasanya kembali ke laut atau bermuara di [[danau]]. Peristiwa ini disebut dengan [[siklus air]], yang merupakan mekanisme penting untuk mendukung kelangsungan kehidupan di darat dan faktor utama yang menyebabkan erosi di permukaan Bumi pada [[Periode (geologi)|periode geologi]]. Pola presipitasi atau curah hujan ini sangat beragam, berkisar dari beberapa meter air per tahun hingga kurang dari satu milimeter. Sirkulasi atmosferik, topologi, dan perbedaan suhu juga menentukan curah hujan rata-rata yang turun di setiap wilayah.<ref name=hydrologic_cycle/>
 
Besar [[energi surya]] yang mencapai Bumi akan menurun seiring dengan meningkatnya lintang. Pada lintang yang lebih tinggi, [[cahaya matahari]] mencapai permukaan Bumi pada sudut yang lebih rendah dan harus melewati kolom atmosfer yang lebih tebal. Akibatnya, suhu rata-rata di permukaan laut menurun sekitar 0,4&nbsp;°C per derajat jarak lintang dari khatulistiwa.<ref name=sadava_heller2006/> Bumi bisa dibagi menjadi zona lintang spesifik berdasarkan perkiraan kesamaan iklim. Pembagian ini berkisar dari wilayah khatulistiwa hingga ke wilayah kutub, yakni zona iklim [[tropis]] (atau khatulistiwa), [[subtropis]], [[iklim sedang]], dan [[iklim kutub|kutub]].<ref name=climate_zones/> Iklim juga bisa diklasifikasikan menurut suhu dan [[curah hujan]], yang ditandai dengan wilayah iklim dengan massa udara yang seragam. Yang paling umum digunakan adalah sistem [[klasifikasi iklim Köppen]] (dicetuskan oleh [[Wladimir Köppen]]). Klasifikasi ini membagi Bumi menjadi lima zona iklim (tropis lembablembap, [[Gurun|kering]], lintang tengah lembablembap, [[Iklim kontinental|kontinental]], dan kutub dingin), yang kemudian dibagi lagi menjadi subjenis yang lebih spesifik.<ref name="berger2002" />
 
==== Atmosfer atas ====
[[FileBerkas:Full moon partially obscured by atmosphere.jpg|thumbjmpl|Pemandangan dari orbit yang memperlihatkan Bulan purnama yang setengah tertutup oleh atmosfer Bumi. Foto oleh [[NASA]].]]
{{See also|Luar angkasa}}
Di atas troposfer, atmosfer terbagi menjadi [[stratosfer]], [[mesosfer]], dan [[termosfer]].<ref name="atmosphere" /> Masing-masing lapisan ini memiliki [[tingkat lincir]] berbeda, yang umumnya didasarkan pada tingkat perubahan suhu dan ketinggian. Di luar lapisan ini, terdapat lapisan [[eksosfer]] dan [[magnetosfer]], tempat medan magnet Bumi berinteraksi dengan [[angin surya]].<ref name=sciweek2004/> Di dalam stratosfer terdapat [[lapisan ozon]], komponen yang berperan melindungi permukaan Bumi dari sinar ultraungu dan memiliki peran penting bagi kehidupan di Bumi. [[Garis Kármán]], yang dihitung 100 &nbsp;km di atas permukaan Bumi, adalah garis khayal yang membatasi atmosfer dengan [[luar angkasa]].<ref name=cordoba2004/>
 
[[Energi panas bumi|Energi panas]] menyebabkan beberapa molekul di tepi luar atmosfer Bumi meningkatkan kecepatan sehingga bisa [[Kecepatan lepas|melepaskan diri]] dari gravitasi Bumi. Hal ini menyebabkan terjadinya [[Pelepasan atmosfer|kebocoran atmosfer]] ke luar angkasa. [[Hidrogen]], yang memiliki berat molekul rendah, bisa mencapai [[kecepatan lepas]] yang lebih tinggi dan lebih mudah mengalami kebocoran ke luar angkasa jika dibandingkan dengan gas lainnya.<ref name=jas31_4_1118/> Kebocoran hidrogen ke luar angkasa mendorong keadaan Bumi dari yang awalnya mengalami [[Redoks|reduksi]] menjadi [[Redoks|oksidasi]]. [[Fotosintesis]] menyediakan sumber oksigen bebas bagi kehidupan di Bumi, tetapi ketiadaan agen pereduksi seperti hidrogen menyebabkan meluasnya penyebaran oksigen di atmosfer.<ref name=sci293_5531_839/> Kemampuan hidrogen untuk melepaskan diri dari atmosfer turut memengaruhi sifat kehidupan yang berkembang di Bumi.<ref name=abedon1997/> Saat ini, atmosfer yang kaya oksigen mengubah hidrogen menjadi air sebelum memiliki kesempatan untuk melepaskan diri. Sebaliknya, sebagian besar peristiwa pelepasan hidrogen terjadi akibat penghancuran [[metana]] di atmosfer atas.<ref name=arwps4_265/>
 
=== Medan magnet ===
[[FileBerkas:Structure of the magnetosphere mod-en.svg|thumbjmpl|300pxupright=1.5|Skema [[magnetosfer]] Bumi. [[Angin surya]] berhembus dari kiri ke kanan|alt=Diagram showing the magnetic field lines of the Earth's magnetosphere. The lines are swept back in the anti-solar direction under the influence of the solar wind.]]
{{Main|Medan magnet Bumi}}
[[Medan magnet Bumi]] diperkirakan terbentuk karena [[dipole magnetik]], dengan kutub magnet berada pada kutub geografi Bumi. Pada khatulistiwa medan magnet, kekuatan medan magnet di permukaan Bumi mencapai {{nowrap|3.05 × 10<sup>−5</sup> [[Tesla|T]]}}, dengan [[momen dipole magnet]] global {{nowrap|7.91 × 10<sup>15</sup> T m<sup>3</sup>}}.<ref name=lang2003/> Menurut [[teori dinamo]], medan magnet dihasilkan di dalam wilayah inti luar tempat energi panas menciptakan gerakan konveksi material konduksi dan menghasilkan [[arus listrik]]. Proses ini pada gilirannya menciptakan medan magnet Bumi. Gerakan konveksi pada inti Bumi berlangsung dengan tidak teratur; kutub magnet melayang dan secara berkala mengubah arah gaya magnet. Hal ini memicu terjadinya [[Pembalikan geomagnetik|pembalikan medan]] pada interval tak beraturan, yang berlangsung beberapa kali setiap jutaan tahun. Pembalikan medan terakhir terjadi sekitar 700.000 tahun yang lalu.<ref name=fitzpatrick2006/><ref name=campbelwh/>
 
Medan magnet membentuk lapisan [[magnetosfer]], yang berfungsi membiaskan partikel yang terkandung dalam [[angin surya]]. Tepi medan magnet yang mengarah ke Matahari berjarak sekitar 13 kali radius Bumi. Tabrakan antara medan magnet dan angin surya menghasilkan [[sabuk radiasi Van Allen]], yakni area berbentuk [[torus]] konsentris dengan [[partikel bermuatan]] energi. Saat [[Plasma (wujud zat)|plasma]] memasuki atmosfer Bumi pada kutub magnet, maka terbentuklah [[aurora]].<ref name=stern2005/>
 
== Rotasi dan orbit ==
 
=== Rotasi ===
{{Main|Rotasi Bumi}}
[[FileBerkas:AxialTiltObliquity.png|thumbjmpl|rightka|[[Kemiringan sumbu]] Bumi (atau [[obliquitas]]) dan hubungannya dengan [[Rotasi|sumbu rotasi]] dan [[Bidang orbit (astronomi )|bidang orbit]].]]
 
Kala rotasi Bumi yang bersifat relatif terhadap Matahari{{ndash}}disebut hari Matahari{{ndash}}adalah 86.400 detik dari waktu Matahari rata-rata (86.400,0025&nbsp;[[SI]]&nbsp;detik).<ref name=aj136_5_1906/> Karena periode hari Matahari Bumi saat ini lebih panjang dari periode ketika abad ke-19 akibat [[akselerasi pasang surut]], setiap hari bervariasi antara 0 hingga 2 SI ms lebih panjang.<ref name=USNO_TSD/><ref>{{Cite web |url=http://maia.usno.navy.mil/ser7/ser7.dat |title=Salinan arsip |access-date=2014-02-26 |archive-date=2015-03-14 |archive-url=https://web.archive.org/web/20150314182157/http://maia.usno.navy.mil/ser7/ser7.dat |dead-url=yes }}</ref>
 
Kala rotasi Bumi yang relatif terhadap [[bintang tetap]], dinamakan ''hari bintang'' oleh [[International Earth Rotation and Reference Systems Service]] (IERS), adalah {{nowrap|86.164,098903691 detik}} dari waktu Matahari rata-rata (UT1), atau {{nowrap |23{{smallsup|h}} 56{{smallsup|m}} 4,098903691{{smallsup|s}}.}}<ref name=IERS/><ref group=catatan name=Aoki/> Kala rotasi Bumi yang relatif terhadap [[presesi]] atau pergerakan [[ekuinoks vernal]], dinamakan ''[[hari sideris]]'', adalah {{nowrap|86.164,09053083288 detik}} dari waktu Matahari rata-rata (UT1) {{nowrap|(23{{smallsup|h}} 56{{smallsup|m}} 4.09053083288{{smallsup|s}})}} {{As of|1982|lc=y}}.<ref name=IERS/> Dengan demikian, hari sideris kira-kira lebih singkat 8,4&nbsp;ms dari hari bintang.<ref name=seidelmann1992/> Panjang hari Matahari rata-rata dalam satuan detik SI dihitung oleh IERS untuk periode 1623–2005<ref name=iers1623/> dan 1962–2005.<ref name=iers1962/>
Baris 356 ⟶ 357:
Selain [[meteor]] pada atmosfer dan satelit berorbit rendah, gerakan utama benda langit di atas Bumi adalah ke arah barat, dengan laju 15°/jam = 15'/menit. Untuk benda langit di dekat [[khatulistiwa angkasa]], pergerakannya terlihat pada diameter Matahari dan Bulan setiap dua menit; dari permukaan Bumi, ukuran Matahari dan Bulan kurang lebih sama.<ref name=zeilik1998/><ref name=angular/>
 
=== Orbit ===
{{Main|Orbit Bumi}}
[[Berkas:Globespin.gif|thumbjmpl|Animasi yang menampilkan rotasi Bumi.]]
Bumi mengorbit Matahari pada jarak rata-rata sekitar 150 juta kilometer setiap 365,2564 [[Waktu Matahari|hari Matahari]] rata-rata, atau satu [[Hari sideris|tahun sideris]]. Dari Bumi, akan terlihat jelas gerakan Matahari ke arah timur dengan laju sekitar 1°/hari, yang memperjelas diameter Bulan atau Bumi setiap 12 jam. Karena pergerakan ini, Bumi membutuhkan waktu rata-rata 24 jam (atau hari Matahari) untuk menyelesaikan putaran penuh pada porosnya sehingga Matahari bisa kembali ke [[meridian]]. Rata-rata kecepatan orbit Bumi adalah 29,8 &nbsp;km/s (107.000&nbsp;km/h), cukup cepat untuk menempuh jarak yang sama dengan diameter planet, atau sekitar 12.742&nbsp;km dalam waktu tujuh menit, dan jarak ke [[Bulan]], 384.000 &nbsp;km dalam waktu 3,5 jam.<ref name="earth fact sheet"/>
 
Bulan berputar dengan Bumi mengelilingi [[pusat massa|barisentrum]] setiap 27,32 hari. Saat dipadukan dengan sistem revolusi Bumi-Bulan mengelilingi Matahari, periode [[Bulan|Bulan sinodik]] dari bulan baru ke bulan baru adalah 29,53 hari. Jika dilihat dari [[Kutub langit|kutub utara langit]], gerakan Bumi, Bulan, dan rotasi sumbu mereka berlawanan dengan jarum jam. Sedangkan jika dilihat dari sudut pandang di atas kutub utara, baik Matahari dan Bumi, Bumi berputar dengan arah berlawanan mengelilingi Matahari. Bidang orbit dan sumbu Bumi tidak teratur; sumbu Bumi [[Kemiringan sumbu|miring]] sekitar 23,4 derajat dari serenjang bidang orbit Bumi-Matahari ([[ekliptika]]), dan bidang orbit Bumi-Bulan miring sekitar ±5,1 derajat dari bidang orbit Bumi-Matahari. Tanpa kemiringan ini, akan muncul gerhana setiap dua minggu, bergantian antara [[gerhana bulan]] dan [[gerhana matahari]].<ref name="earth_fact_sheet" /><ref name="moon_fact_sheet"/>
 
[[Bukit sfer]], atau lingkup pengaruh [[gravitasi]] Bumi, adalah sekitar 1,5&nbsp;Gm atau 1.500.000&nbsp;km di radius.<ref name=vazquez_etal2006/><ref name=hill_radius group=catatan/> Ini adalah jarak maksimum saat pengaruh gravitasi Bumi lebih kuat daripada Matahari dan planet-planet jauh. Objek harus mengorbit Bumi dalam radius ini, atau mereka akan terkena dampak perturbasi gravitasi Matahari.
 
Bumi, bersama dengan [[Tata Surya]], terletak di [[galaksi]] [[Bima Sakti]] dan mengorbit sekitar 28.000 [[tahun cahaya]] dari pusat galaksi. Saat ini, Bumi berada sekitar 20 tahun cahaya di atas [[bidang galaktik]] di [[Lengan Orion|lengan spiral Orion]].<ref name=nasa20051201/>
 
=== Kemiringan sumbu dan musim ===
{{Main|Kemiringan sumbu|Musim}}
[[FileBerkas:The Earth and the Moon photographed from Mars orbit.jpg|thumbjmpl|225px|rightka|Bumi dan Bulan dari [[Mars]], dipotret oleh [[Mars Reconnaissance Orbiter]]. Dari luar angkasa, bentuk Bumi berubah dari waktu ke waktu, mirip dengan [[fase bulan]].|alt=Black space with crescent Earth at lower left, crescent Moon at upper right, 30% of Earth's apparent diameter; five Earth diameters apparent space between; sunlit from right side]]
 
Karena [[kemiringan sumbu]] Bumi, jumlah sinar matahari yang jatuh pada titik tertentu di permukaan Bumi bervariasi sepanjang tahun. Hal ini menyebabkan perubahan [[musim]] pada iklim. [[Musim panas]] di [[belahan utara]] terjadi saat Kutub Utara mengarah tepat ke Matahari, dan [[musim dingin]] berlangsung di saat sebaliknya. Ketika musim panas, hari berlangsung lebih lama dan Matahari naik lebih tinggi di langit. Pada musim dingin, iklim pada umumnya menjadi lebih dingin dan hari berjalan dengan lebih pendek. Di atas [[Lingkar Arktik]], peristiwa ekstrem terjadi saat tidak ada siang hari dan malam berlangsung lebih dari 24 jam sehubungan dengan fenomena [[malam kutub]]. Di [[belahan selatan]], situasinya berkebalikan dengan Kutub Utara; orientasi [[Kutub Selatan]] berlawanan dengan arah Kutub Utara.
Baris 375 ⟶ 376:
Secara astronomis, empat musim ditentukan oleh [[titik balik matahari]]{{ndash}}titik saat kemiringan sumbu maksimum orbit menuju atau menjauh dari Matahari{{ndash}}dan [[ekuinoks]], saat arah kemiringan dan arah Matahari berada pada satu garis tegak lurus (serenjang). Di belahan utara, [[titik balik matahari musim dingin]] terjadi pada tanggal 21 Desember, [[titik balik matahari musim panas]] pada 21 Juni, [[ekuinoks musim semi]] sekitar tanggal 20 Maret, dan [[Ekuinoks|ekuinoks musim gugur]] tanggal 23 September. Di belahan selatan, situasinya terbalik; titik balik matahari musim panas dan musim dingin terjadi sebaliknya dan ekuinoks musim semi dan musim gugur dipertukarkan tanggalnya.<ref name=bromberg2008/>
 
[[FileBerkas:Earth-Moon system as seen from Saturn (PIA17171).jpg|leftkiri|thumbjmpl|250px|[[Cassini–Huygens|Pesawat ruang angkasa Cassini]] NASA memotret Bumi dan Bulan (terlihat pada kanan bawah) dari [[Saturnus]] (19 Juli 2013).]]
 
Sudut kemiringan Bumi relatif stabil dalam jangka waktu yang lama. Kemiringan ini mengalami [[nutasi]]; gerakan kecil dan tidak teratur dengan periode utama 18,6 tahun.<ref name=lin2006/> Orientasi (bukannya sudut) dari sumbu Bumi juga berubah dari waktu ke waktu, yang mengalami presesi di sekeliling lingkaran penuh setiap 25.800 tahun; presesi inilah yang menyebabkan perbedaan antara [[tahun sideris]] dan [[tahun tropis]]. Kedua gerakan ini disebabkan oleh adanya daya tarik yang beragam dari Matahari dan Bulan terhadap tonjolan khatulistiwa Bumi. Dari sudut pandang Bumi, kutub juga berpindah beberapa meter di sepanjang permukaan. [[Gerakan kutub]] ini memiliki beberapa komponen siklis, yang secara kolektif dikenal dengan [[gerakan kuasiperiodik]]. Selain komponen tersebut, terdapat siklus 14 bulanan yang dinamakan [[gerakan Chandler]]. Kecepatan rotasi Bumi juga bervariasi, yang dikenal dengan fenomena variasi panjang hari.<ref name=fisher19960205/>
Baris 381 ⟶ 382:
Di zaman modern, [[perihelion]] Bumi terjadi sekitar tanggal 3 Januari, dan [[aphelion]] pada tanggal 4 Juli. Tanggal ini akan berubah seiring waktu karena proses [[presesi]] dan faktor orbital lainnya, yang mengikuti pola siklus yang dikenal dengan [[siklus Milankovitch]]. Perubahan jarak antara Bumi dan Matahari menyebabkan meningkatnya energi surya yang mencapai Bumi sebesar 6,9%.<ref name=solar_energy group=catatan/> Karena belahan bumi selatan miring menghadap Matahari ketika Bumi mencapai jarak terdekatnya dengan Matahari, belahan selatan menerima energi surya yang lebih banyak jika dibandingkan dengan belahan utara selama setahun. Dampak fenomena ini jauh lebih besar daripada perubahan energi total yang disebabkan oleh kemiringan sumbu, dan sebagian besar kelebihan energi tersebut diserap oleh air dalam jumlah banyak di belahan selatan.<ref name=williams20051230/>
 
==Kelayakhunian Kelaikhunian ==
{{see also|KelayakhunianKelaikhunian planet}}
[[FileBerkas:Pingualuit aerial 2007.jpg|thumbjmpl|rightka|Kawah tubrukan meteor, saat ini dipenuhi oleh air, menandai permukaan Bumi.]]
Sebuah planet yang bisa mendukung kehidupan disebut dengan planet layaklaik huni, meskipun kehidupan tersebut tidak berasal dari sana. Bumi memiliki air{{ndash}}lingkungan tempat molekul organik kompleks merakit diri dan berinteraksi, dan memiliki energi yang cukup untuk mempertahankan [[metabolisme]].<ref name=ab2003/> Jarak Bumi dari Matahari, eksentrisitas orbit, laju rotasi, kemiringan sumbu, sejarah [[geologi]], atmosfer, dan medan magnet pelindung merupakan faktor-faktor yang bersumbangsih terhadap kondisi iklim di permukaan Bumi saat ini.<ref name=dole1970/>
 
=== Biosfer ===
{{Main|Biosfer}}
[[FileBerkas:EilatFringingReef.jpg|thumbjmpl|leftkiri|[[Terumbu karang]] dan [[pantai]].]]
Kehidupan Bumi secara keseluruhan membentuk [[biosfer]]. Biosfer Bumi diperkirakan mulai [[Evolusi|berevolusi]] sekitar 3,5 miliar tahun yang lalu.<ref name="NYT-20131003" /> Biosfer terbagi menjadi sejumlah [[bioma]], yang dihuni oleh hewan dan tumbuhan sejenis. Di daratan, bioma dibagi menurut perbedaan lintang, [[ketinggian|ketinggian dari permukaan laut]], dan [[kelembaban]]. [[Tundra|Bioma]] kebumian membentang di [[Lingkar Antarktika]] dan [[Lingkar Arktik|Arktik]], di [[Tundra Alpen|lintang tinggi]] atau [[Gurun|wilayah kering]], yang umumnya memiliki tumbuhan dan hewan yang jarang; [[Keanekaragaman hayati|keanekaragaman spesies]] mencapai puncaknya di [[Hutan hujan tropis|dataran rendah di lintang khatulistiwa]].<ref name=amnat163_2_192/>
 
=== Evolusi kehidupan ===
{{Main|Sejarah evolusi kehidupan}}
[[FileBerkas:ADNDNA animation.gif|thumbjmpl|Model komputer beberapa [[DNA]].]]
 
Peristiwa kimia yang sangat energik diperkirakan telah menciptakan sebuah molekul yang mampu mereplika dirinya sendiri sekitar 4 miliar tahun yang lalu. Setengah miliar tahun kemudian, [[Leluhur universal terakhir|nenek moyang pertama dari semua kehidupan muncul]].<ref name=sa282_6_90/> Proses [[fotosintesis]] menyebabkan energi surya bisa dinikmati secara langsung oleh bentuk kehidupan; oksigen yang dihasilkan melalui fotosintesis terkumpul di [[atmosfer]] dan membentuk [[lapisan ozon]] (bentuk [[Oksigen|oksigen molekul]] [O<sub>3</sub>]) di atmosfer bagian atas.<ref name="NYT-20131003">{{cite news |last=Zimmer |first=Carl |authorlink=Carl Zimmer |title=Earth’s Oxygen: A Mystery Easy to Take for Granted |url=http://www.nytimes.com/2013/10/03/science/earths-oxygen-a-mystery-easy-to-take-for-granted.html |date=3 October 2013 |work=[[New York Times]] |accessdate=3 October 2013 }}</ref> Penggabungan sel-sel kecil di dalam [[sel]] yang lebih besar menyebabkan [[teori endosimbiotis|perkembangan sel-sel kompleks]] yang disebut dengan [[eukariota]].<ref name=jas22_3_225/> Organisme multisel terbentuk sebagai sel di dalam [[Koloni (biologi)|koloni]] khusus. Dengan diserapnya [[Ultraungu|radiasi ultraungu]] berbahaya oleh lapisan [[ozon]], kehidupan berkembang di permukaan Bumi.<ref name=burton20021129/> Bukti awal [[Kehidupan|kehidupan di Bumi]] adalah [[grafit]] berusia 3,7 miliar tahun yang ditemukan di [[Metasedimen|batuan metasedimen]] di [[Greenland Barat]]<ref name="NG-20131208">{{cite web |url =http://www.nature.com/ngeo/journal/vaop/ncurrent/full/ngeo2025.html|authors= Yoko Ohtomo, Takeshi Kakegawa, Akizumi Ishida, Toshiro Nagase, Minik T. Rosing| title =Evidence for biogenic graphite in early Archaean Isua metasedimentary rocks |publisher =''[[Nature Geoscience]]''|doi=10.1038/ngeo2025|date=8 December 2013| accessdate =9 Dec 2013 }}</ref> dan [[fosil]] [[lapisan mikrobamikrob]] berusia 3,48 miliar tahun yang ditemukan di [[batu pasir]] di [[Australia Barat]].<ref name="AP-20131113">{{cite news |last=Borenstein |first=Seth |title=Oldest fossil found: Meet your microbial mom |url=http://apnews.excite.com/article/20131113/DAA1VSC01.html |date=13 November 2013 |work=[[AP News]] |accessdate=15 November 2013 }}</ref><ref name="AST-20131108">{{cite journal |last1=Noffke |first1=Nora|last2=Christian |first2=Daniel |last3=Wacey |first3=David |last4=Hazen |first4=Robert M. |title=Microbially Induced Sedimentary Structures Recording an Ancient Ecosystem in the ca. 3.48 Billion-Year-Old Dresser Formation, Pilbara, Western Australia |url=http://online.liebertpub.com/doi/abs/10.1089/ast.2013.1030 |date=8 November 2013 |journal=[[Astrobiology (jurnal)]] |doi=10.1089/ast.2013.1030 |accessdate=15 November 2013 }}</ref>
 
Sejak 1960-an, muncul hipotesis yang menitikberatkan peristiwa [[Gletser|glasial]] yang terjadi antara 750 hingga 580 juta tahun yang lalu pada era [[Neoproterozoikum]], ketika sebagian besar permukaan Bumi ditutupi oleh lapisan es. Hipotesis ini disebut dengan "[[Bumi Bola Salju]]", dan diperhitungkan karena terjadi sebelum [[ledakan Kambrium]], saat bentuk [[kehidupan]] multisel mulai berkembang biak.<ref name=kirschvink1992/>
Baris 401 ⟶ 402:
Setelah ledakan Kambrium sekitar 535 juta tahun yang lalu, terjadi lima [[kepunahan massal|peristiwa kepunahan massal besar]].<ref name=sci215_4539_1501/> [[Peristiwa kepunahan Kapur–Paleogen|Peristiwa terakhir]] terjadi 66 juta tahun yang lalu, saat hantaman asteroid mengakibatkan kepunahan [[dinosaurus]] dan reptil besar lainnya, tetapi beberapa hewan kecil seperti [[mamalia]] pengerat berhasil selamat. Selama 66 juta tahun terakhir, kehidupan mamalia telah mengalami diversifikasi, dan beberapa juta tahun sebelumnya, primata seperti kera Afrika ''[[Orrorin tugenensis]]'' mulai memiliki kemampuan untuk berdiri tegak.<ref name=gould1994/> Hal ini mendorong berkembangnya komunikasi dan memberikan nutrisi dan stimulan yang dibutuhkan bagi otak, yang memicu terjadinya [[Evolusi manusia|evolusi umat manusia]]. [[Sejarah pertanian|Berkembangnya pertanian]], dan diikuti oleh [[peradaban]], memungkinkan manusia untuk menguasai Bumi dalam waktu singkat karena tidak adanya bentuk kehidupan lain yang mendominasi Bumi.<ref name=bgsa119_1_140/> Hal ini turut memengaruhi sifat dan kuantitas bentuk kehidupan lainnya.
 
=== Sumber daya alam dan pemanfaatan lahan ===
{{Main|Sumber daya alam|Pemanfaatan lahan}}
 
Baris 432 ⟶ 433:
Sebagian besar bahan bakar fosil terkandung dalam kerak Bumi, yang terdiri dari [[batu bara]], [[minyak bumi]], [[gas alam]], dan [[metana klarat]]. Sumber daya ini dimanfaatkan oleh manusia untuk memproduksi energi atau sebagai bahan baku untuk memproduksi bahan-bahan kimia. Bijih mineral juga terbentuk di dalam kerak Bumi melalui proses [[genesis bijih]], yang disebabkan oleh aktivitas [[erosi]] dan tektonik lempeng.<ref name=mnpl_utx2006/> Mineral ini menjadi sumber konsentrasi bagi banyak [[logam]] dan [[unsur kimia]] bernilaiguna lainnya.
 
Biosfer Bumi memproduksi banyak produk-produk biologi yang bermanfaat bagi kehidupan manusia, termasuk [[makanan]], kayu, [[Obat|obat-obatan]], oksigen, dan pendaurulangan limbah-limbah organik. [[Ekosistem]] darat bergantung pada humus dan air tawar, sedangkan ekosistem laut bergantung pada nutrisi terlarut yang diluruhkan dari darat.<ref name=science299_5607_673/> Pada tahun 1980, 5.053 [[Hektar|Mha]] lahan di permukaan Bumi terdiri dari hutan dan rimba, 6.788 Mha padang rumput dan lahan peternakan, dan sisanya 1.501 Mha dibudidayakan sebagai lahan pertanian.<ref name="Turner1990"/> Jumlah lahan irigasi pada tahun 1993 diperkirakan {{convert|2481250|km2}}2.481.250&nbsp;km<sup>2</sup>.<ref name=cia/> Manusia juga hidup di darat dengan memanfaatkan [[bahan bangunan]] untuk membangun tempat tinggal.
 
=== Bencana alam dan lingkungan ===
{{main|Bencana alam}}
[[FileBerkas:MtCleveland ISS013-E-24184.jpg|thumbjmpl|300px|rightka|[[Gunung berapi]] menyemburkan awan panas ke atmosfer.]]
Sebagian besar wilayah di permukaan Bumi mengalami cuaca ekstrem seperti [[siklon]] tropis, [[badai]], [[hurikan]], atau [[taifun]] yang mengancam kehidupan di wilayah tersebut. Dari tahun 1980 sampai 2000, bencana-bencana tersebut telah mengakibatkan kematian setidaknya 11.800 jiwa per tahun.<ref name=walsh2008/> Akibat aktivitas Bumi atau tindakan manusia, banyak wilayah di permukaan Bumi yang dilanda oleh [[gempa bumi]], [[tanah longsor]], [[tsunami]], [[Gunung berapi|letusan gunung berapi]], [[tornado]], [[badai salju]], [[banjir]], kekeringan, kebakaran hutan, dan bencana alam lainnya.
 
Baris 443 ⟶ 444:
Menurut [[Perserikatan Bangsa-Bangsa]], konsensus ilmiah saat ini mengaitkan aktivitas manusia dengan [[pemanasan global]] akibat emisi karbon dioksida industri. Fenomena ini diperkirakan akan menyebabkan perubahan seperti mencairnya [[gletser]] dan lapisan es, suhu menjadi lebih ekstrem, perubahan cuaca, dan [[Kenaikan permukaan laut|naiknya permukaan laut]].<ref name=un20070202/>
 
===Geografi Persebaran manusia ===
{{Main|Geografi manusia|Dunia}}
 
Baris 453 ⟶ 454:
| image1 = Continents vide couleurs.png
| alt1 =
| caption1 = Tujuh [[benua]] di Bumi:<ref name=NatlGeo>[http://www.nationalgeographic.com/xpeditions/atlas/index.html?Parent=world&Mode=d&SubMode=w World], ''[[National Geographic|National Geographic]]&nbsp;– [http://www.nationalgeographic.com/xpeditions/ Xpeditions Atlas].'' 2006. Washington, DC: National Geographic Society.</ref> {{nowrap|{{colorbox|#0c0}} [[Amerika Utara]],}} {{nowrap|{{colorbox|green}} [[Amerika Selatan]],}} {{nowrap|{{colorbox|#0040ff}} [[Antarktika]],}} {{nowrap|{{colorbox|#fed52e}} [[Afrika]],}} {{nowrap|{{colorbox|#c10000}} [[Eropa]],}} {{nowrap|{{colorbox|#f33e01}} [[Asia]],}} {{nowrap|{{colorbox|#c04080}} [[Australia (benua)|Australia]]}}
 
| image2 = Earthlights dmsp.jpg
| alt2 =
| caption2 = Bumi di malam hari pada tahun 2000, yang menggabungkan data iluminasi dari [[Defense Meteorological Satellite Program|DMSP]]/OLS. Terlihat lampu-lampu kota bersinar di berbagai benua.
}}
 
[[Kartografi]], atau ilmu dan praktik pembuatan [[peta]], serta cabang [[geografi]] terapan lainnya, secara historis telah menjadi disiplin ilmu yang bertujuan untuk menggambarkan Bumi. [[Survei]] (penentuan lokasi dan jarak) dan [[navigasi]] (penentuan posisi dan arah) berkembang sejalan dengan kartografi dan geografi, yang mampu menyediakan dan mengukur kesesuaian informasi yang diperlukan mengenai Bumi.
 
[[Penghuni Bumi|Penduduk Bumi]] telah mencapai angka 7 miliar pada tanggal 31 Oktober 2011.<ref>{{cite web|url=http://news.yahoo.com/various-7-billionth-babies-celebrated-worldwide-064439018.html|title=Various '7 billionth' babies celebrated worldwide|accessdate=2011-10-31}}</ref> Populasi manusia global diperkirakan akan mencapai 9,2 miliar pada tahun 2050.<ref name=un2006/> Pertumbuhan penduduk ini diperkirakan terjadi di [[negara berkembang]]. [[Kepadatan penduduk]] sangat beragam di seluruh dunia, dengan sebagian besar penduduk dunia berada di [[Asia]]. Pada tahun 2020, 60% penduduk dunia diperkirakan tinggal di kawasan [[perkotaan]], bukannya di [[Desa|perdesaan]].<ref name=prb2007/>
 
Dari keseluruhan permukaan Bumi, hanya seperdelapan yang bisa dihuni oleh manusia, sedangkan tiga perempatnya diselimuti oleh lautan, dan selebihnya merupakan wilayah gurun (14%),<ref name=hessd4_439/> pegunungan tinggi (27%),<ref name=biodiv/> dan relief lainnya yang tidak layaklaik huni. Permukiman permanen paling utara di Bumi adalah [[Alert, Nunavut|Alert]] di [[Nunavut]], Kanada (82°28′LU).<ref name=cfsa2006/> Sedangkan permukiman yang terletak paling selatan adalah [[Stasiun Kutub Selatan Amundsen-Scott]] di [[Antarktika]] (90°LS).
 
[[Negara berdaulat]] merdeka menguasai seluruh permukaan darat Bumi, kecuali beberapa wilayah di Antarktika dan [[Terra nullius|wilayah tanpa klaim]] [[Bir Tawil]] di perbatasan Mesir dan Sudan. Hingga tahun 2013, terdapat [[Daftar negara berdaulat|206 negara berdaulat]], termasuk 193 [[negara anggota Perserikatan Bangsa-Bangsa]]. Selain itu, terdapat 59 [[wilayah dependensi]], dan sejumlah [[Daftar wilayah otonom menurut negara|wilayah otonom]], [[Persengketaan wilayah|wilayah yang dipersengketakan]], dan entitas lainnya.<ref name=cia /> Sepanjang sejarahnya, Bumi tidak pernah memiliki pemerintahan [[Kedaulatan|berdaulat]] yang memiliki kewenangan atas seluruh dunia, meskipun beberapa negara berupaya untuk [[Hiperkuasa|mendominasi dunia]] dan gagal.<ref name=kennedy1989/>
Baris 470 ⟶ 471:
[[Perserikatan Bangsa-Bangsa]] (PBB) adalah sebuah [[organisasi internasional|organisasi antarpemerintah]] di seluruh dunia yang bertujuan untuk menjadi penengah dalam persengketaan antarnegara, sehingga terhindar dari konflik bersenjata.<ref name=uncharter/> PBB terutama sekali berfungsi sebagai forum bagi diplomasi internasional dan [[hukum internasional]]. Ketika konsensus keanggotaan memperbolehkan, maka akan disepakati mekanisme untuk melakukan intervensi militer.<ref name=un_int_law/>
 
[[FileBerkas:AS8-13-2329.jpg|thumbjmpl|rightka|Foto pertama Bumi yang dipotret oleh astronotastronaut dari [[Apollo 8]].]]
Manusia pertama yang mengorbit Bumi adalah [[Yuri Gagarin]] pada tanggal 12 April 1961.<ref name=kuhn2006/> Secara keseluruhan, hingga 30 Juli 2010, sekitar 487 orang telah mengunjungi [[luar angkasa]] dan mencapai orbit Bumi, dan [[program Apollo|dua belas]] di antaranya telah menginjakkan kaki di permukaan Bulan.<ref name=ellis2004/><ref name=shayler_vis2005/><ref name=wade2008/> Keberadaan manusia di luar angkasa hanya terdapat di [[Stasiun Luar Angkasa Internasional]]. Awak stasiun, saat ini berjumlah enam orang, akan diganti setiap enam bulan sekali.<ref name=nasa_rg_iss2007/> Perjalanan terjauh yang dilakukan oleh manusia dari Bumi adalah sejauh 400.171 &nbsp;km, yang ditempuh dalam misi [[Apollo 13]] pada tahun 1970.<ref name=cramb2007/>
 
== Sudut pandang sejarah dan budaya ==
{{Main|Bumi dalam budaya}}
[[File:Earth symbol (fixed width).svg|48px|left|🜨]]
[[Simbol astronomi]] standar Bumi berbentuk palang yang dikelilingi oleh sebuah lingkaran.<ref name=liungman2004/>
 
Tidak seperti planet lainnya di Tata Surya, sebelum abad ke-16, manusia tidak menganggap Bumi sebagai objek bergerak yang mengelilingi Matahari pada orbitnya.<ref name=arnett20060716/> Bumi seringkalisering kali diumpamakan sebagai dewa atau dewi. Dalam banyak budaya, [[dewi semesta]] juga dilambangkan sebagai [[dewa kesuburan]]. [[Mitos penciptaan]] dalam sudut pandang berbagai agama menjelaskan bahwa Bumi diciptakan oleh Tuhan atau dewa. Sejumlah agama, terutama [[Fundamentalisme|kaum fundamental]] Protestan<ref name=Dutch2002/> atau Islam,<ref name=edis2003/> menyatakan bahwa kisah penciptaan Bumi dan asal usul kehidupan dalam [[kitab suci]] adalah [[Ilmu penciptaan|kebenaran hakiki]] dan harus dipertimbangkan untuk menggantikan teori ilmiah .<ref name=jge53_3_319/> Pernyataan tersebut ditentang oleh kalangan ilmiah<ref name=arghg4_143/><ref name=sec_nap2008/> dan oleh kelompok keagamaan lainnya.<ref name=jrst43_4_419/><ref name=frye1983/><ref name=nathist106_2_16/> Perdebatan yang cukup menonjol adalah [[kontroversi penciptaan evolusi]].
 
DiPada masa lalu, terdapat anggapan yang meyakini bahwa [[Bumi datar|Bumi itu datar]],<ref name=russell1997/> namun anggapan ini digantikan oleh [[Bumi bulat]], konsep yang diperkenalkan oleh [[Pythagoras]] (abad ke-6 SM).<ref name=jacobs19980201/> [[Budaya|Kebudayaan manusia]] telah mengembangkan berbagai pandangan mengenai Bumi, termasuk [[Antropomorfisme|perumpamaan]] sebagai dewa planet, bentuknya yang datar, posisinya sebagai [[Model geosentris|pusat alam semesta]], dan [[Hipotesis Gaia|Prinsip Gaia]] pada zaman modern, yang menyatakan bahwa Bumi adalah organisme tunggal yang mampu mengatur dirinya sendiri.
 
== Kronologi ==
=== Pembentukan ===
{{Main|Sejarah Bumi}}
[[FileBerkas:ArchivoNASA-JPL-Caltech 362- Double the Rubble (PIA11375) (pd).pngjpg|thumbjmpl|350px251px|Lukisan mengenai kelahiran Tata Surya.]]
Material paling awal yang ditemukan di Tata Surya berusia {{val|4.5672|0.0006|ul=miliar tahun}}.<ref name=bowring_housch1995/> Dengan demikian, Bumi diperkirakan terbentuk akibat [[Akresi (astrofisika)|akresi]] yang terjadi pada masa itu. Sekitar {{val|4.54|0.04|u=miliar tahun yang lalu}},<ref name="age_earth1" /> Bumi primordial diperkirakan telah terbentuk. [[Pembentukan dan evolusi Tata Surya]] terjadi bersamaan dengan Matahari. Secara teori, [[nebula surya]] memisahkan volume [[awan molekul]] akibat keruntuhan gravitasi, yang mulai berputar dan berpencar di [[cakram sirkumstelar]], dan kemudian planet-planet terbentuk bersamaan dengan bintang. Nebula mengandung gas, serat es, dan [[Debu kosmis|debu]] (termasuk [[nuklida primordial]]). Menurut [[Hipotesis nebula|teori nebula]], [[planetesimal]] mulai terbentuk sebagai [[Material butiran|partikulat]] akibat [[Kohesi (geologi)|penggumpalan kohesif]] dan gravitasi. Proses pembentukan Bumi primordial terus berlanjut selama 10–{{val|20|ul=juta tahun}} kemudian.<ref name=nature418_6901_949/> Bulan terbentuk tak lama sesudah pembentukan Bumi, sekitar {{val|4.53|u=miliar tahun yang lalu}}.<ref name=science310_5754_1671/>
 
Pembentukan [[Bulan]] masih diperdebatkan oleh para ilmuwan. Hipotesis yang disepakati menjelaskan bahwa Bulan terbentuk akibat [[Akresi (astrofisika)|akresi]] materi yang terlepas dari Bumi setelah objek seukuran Mars bernama [[Theia (planet)|Theia]] [[Hipotesis tubrukan besar|bertubrukan]] dengan Bumi.<ref name=reilly20091022/> Meskipun demikian, hipotesis ini dianggap tidak konsisten. Menurut hipotesis ini, massa Theia adalah 10% dari massa Bumi,<ref name=canup_asphaug2001a/> yang bertubrukan dengan Bumi dalam tabrakan sekilas,<ref name=canup_asphaug2001b/> dan sebagian massa Theia menyatu dengan Bumi. Sekitar 3,8 dan 4,1 miliar tahun yang lalu, hantaman sejumlah besar [[asteroid]] menyebabkan perubahan besar pada lingkungan permukaan Bulan yang berlubang-lubang dan lebih besar dari permukaan Bumi.
 
=== Sejarah geologi ===
{{Main|Sejarah geologi Bumi}}
[[FileBerkas:Pangea animation 03.gif|thumbjmpl|leftkiri|200px|Animasi pemisahan [[Pangaea]].]]
Lautan dan atmosfer Bumi terbentuk akibat aktivitas [[Gunung berapi|vulkanis]] dan [[pelepasan gas]], termasuk [[uap air]]. [[Asal usul air di Bumi|Lautan terbentuk]] karena proses kondensasi yang dipadukan dengan penambahan es dan air yang dibawa oleh [[asteroid]], [[protoplanet]], dan [[komet]].<ref name="watersource"/> Menurut [[paradoks Matahari muda yang redup|hipotesis saat ini]], "[[gas rumah kaca]]" atmosferik menjaga agar lautan tidak membeku saat Matahari hanya memiliki tingkat [[Luminositas matahari|luminositas]] sebesar 70%. <ref name=asp2002/> 3,5 miliar tahun yang lalu, medan magnet Bumi terbentuk, yang melindungi atmosfer dari serangan [[angin surya]].<ref name=physorg20100304/> [[Kerak (geologi)|Kerak]] terbentuk saat lapisan luar Bumi yang cair [[Perubahan wujud zat|berubah bentuk]] menjadi padat akibat pendinginan setelah uap air mulai terkumpul di atmosfer. Hipotesis lainnya<ref name=williams_santosh2004/> menjelaskan bahwa massa daratan telah stabil seperti saat ini,<ref name=science164_1229/> atau mengalami pertumbuhan yang cepat<ref name=tp322_19/> pada awal [[sejarah Bumi]],<ref name=rg6_175/> yang diikuti oleh penstabilan wilayah benua dalam jangka panjang.<ref name=science310_5756_1947/><ref name=jaes23_799/><ref name=ajes38_613/> Benua terbentuk akibat [[tektonik lempeng]], proses yang secara berkelanjutan menyebabkan berkurangnya panas pada interior Bumi. Dalam [[Skala waktu geologi|skala waktu]] yang berlangsung selama ratusan juta tahun, superbenua telah terbentuk dan terbelah sebanyak tiga kali. Sekitar 750 juta tahun yang lalu, salah satu superbenua paling awal yang diketahui, [[Rodinia]], mulai terpisah. Benua yang terpisah kemudian membentuk [[Pannotia]] (600-540 juta tahun yang lalu) dan [[Pangaea]], yang juga terpecah pada 180 juta tahun yang lalu.<ref name=as92_324/>
 
Periode [[zaman es]] dimulai sekitar 40 juta tahun yang lalu, dan kemudian meluas pada masa [[Pleistosen]] sekitar 3 juta tahun yang lalu. Wilayah yang terletak pada [[lintang]] tinggi telah mengalami siklus glasiasi dan pencairan es berkali-kali, yang berulang setiap 40-100.000 tahun. Glasiasi benua terakhir terjadi 10.000 tahun yang lalu<ref name=psc/>
 
=== Masa depan ===
{{Main|Masa depan Bumi}}
Perkiraan mengenai berapa lama lagi Bumi sanggup menopang kehidupan berkisar dari 500 juta tahun hingga 2,3 miliar tahun dari sekarang.<ref name="britt2000" /><ref name=carrington /><ref name="pnas1_24_9576" /> Masa depan Bumi berkaitan erat dengan Matahari. Akibat penumpukan [[helium]] di inti Matahari, [[Luminositas matahari|luminositas total Matahari]] akan meningkat secara perlahan. Luminositas Matahari akan meningkat sebesar 10% dalam waktu 1,1 miliar tahun ke depan dan 40% dalam waktu 3,5 miliar tahun.<ref name="sun_future"/> Peningkatan [[radiasi]] yang mencapai Bumi cenderung memiliki dampak yang mengerikan, termasuk menghilangnya lautan di planet ini.<ref name=icarus74_472/>
 
Meningkatnya suhu di permukaan Bumi akan mempercepat [[Siklus karbon|siklus CO<sub>2</sub>]] [[anorganik]], mengurangi konsentrasi yang akan menyebabkan kematian tanaman di Bumi (10 ppm untuk [[Fiksasi karbon C4|fotosintesis C4]]), yang diperkirakan terjadi pada 500-900 miliarjuta tahun ke depan.<ref name="britt2000" /> Kurangnya vegetasi akan menyebabkan ketiadaan oksigen di atmosfer, sehingga hewan akan [[Kepunahan|punah]] dalam beberapa juta tahun lagi.<ref name=ward_brownlee2002/> Miliaran tahun kemudian, semua air di permukaan Bumi akan habis<ref name=carrington/> dan suhu global akan mencapai {{val|70|ul=degC}} ({{val|158|ul=degF}}).<ref name=ward_brownlee2002/> Bumi diperkirakan efektif untuk dihuni dalam waktu 500 juta tahun dari sekarang,<ref name="britt2000"/> namun jangka huni ini mungkin bisa diperpanjang hingga 2,3 miliar tahun jika [[nitrogen]] di atmosfer habis.<ref name=pnas1_24_9576/> Bahkan jika Matahari tetap ada dan stabil, 27% air di samudra akan turun ke [[mantel (geologi)|mantel]] Bumi dalam waktu satu miliar tahun lagi akibat berkurangnya ventilasi uap di [[punggung tengah samudra]].<ref name=hess5_4_569/>
 
[[FileBerkas:Solar Life Cycle.svg|thumbjmpl|700px|centerpus|alt=14 billion year timeline showing Sun's present age at {{val|4.6|ul=byr}}; from {{val|6|u=byr}} Sun gradually warming, becoming a red dwarf at {{val|10|u=byr}}, "soon" followed by its transformation into a white dwarf star|Siklus hidup Matahari]]
Matahari akan [[Evolusi bintang|berevolusi]] menjadi [[raksasa merah]] sekitar 5 miliar tahun lagi. Radius Matahari diperkirakan akan lebih luas 250 kali dari radius sekarang, atau sekitar {{convert|1 [[Satuan astronomi|AU|SA]] (150 juta km| lk=off|abbr=on}}).<ref name="sun_future" /><ref name="sun_future_schroder"/> Sedangkan nasib Bumi masih belum jelas. Sebagai raksasa merah, Matahari akan kehilangan massa sekitar 30%. Akibatnya, tidak ada efek pasang surut, dan orbit Bumi akan berpindah {{convert|1.,7|AU| SA (250 juta km| abbr=on}}) dari Matahari saat bintang raksasa tersebut mencapai radius maksimum. Bumi diperkirakan akan melindungi dirinya dengan cara memperluas atmosfer luarnya. Meskipun demikian, kehidupan di Bumi tetap akan punah akibat meningkatnya tingkat luminositas Matahari (dengan tingkat luminositas 5.000 kali lebih besar dari sekarang).<ref name="sun_future" /> Penelitian pada tahun 2008 menunjukkan bahwa orbit Bumi akan rusak karena [[Akselerasi pasang surut|efek pasang surut]] dan daya tarik Matahari, sehingga Bumi akan memasuki atmosfer Matahari dan menguap akibat panas.<ref name="sun_future_schroder" /> Setelah peristiwa ini terjadi, inti Matahari akan luruh menjadi [[katai putih]] dan lapisan luarnya dimuntahkan ke angkasa menjadi [[nebula planet]]. Materi Bumi di dalam Matahari akan dilepaskan ke angkasa antarbintang, yang di kemudian hari mungkin akan membentuk planet generasi baru dan benda langit lainnya.
 
== Bulan ==
{{main|Bulan}}
{| class="wikitable" style="float: right; margin-left: 0.5em;"
Baris 518 ⟶ 520:
| '''Periode orbit''' || {{nowrap|27 d 7 h 43,7 m}}
|}
[[FileBerkas:Earth-Moon.svg|thumbjmpl|250px|Rincian sistem Bumi-Bulan. Foto dari [http://visibleearth.nasa.gov/view_set.php?categoryID=2363 NASA] {{Webarchive|url=https://web.archive.org/web/20111101215702/http://visibleearth.nasa.gov/view_set.php?categoryID=2363 |date=2011-11-01 }}. Data dari [http://nssdc.gsfc.nasa.gov/planetary/factsheet/moonfact.html NASA]. Sumbu Bulan ditentukan oleh [[Hukum Cassini|hukum ketiga Cassini]].]]
[[FileBerkas:FullMoon2010.jpg|thumbjmpl|leftkiri|[[Bulan purnama]] dilihat dari [[belahan utara|belahan bumi utara]].]]
[[Bulan]] adalah [[satelit]] mirip planet besar dengan sifat [[Planet kebumian|kebumian]], yang berdiameter sekitar seperempat dari diameter Bumi dan merupakan bulansatelit alami terbesar dalam Tata Surya menurut ukuran relatif planet, meskipun [[Charon (bulan)|Charon]] lebih besar untuk ukuran [[planet katai]] [[Pluto]]. Satelit alami yang mengorbit planet lainnya juga dinamakan "bulan", sesuai dengan nama satelit Bumi.
 
Daya tarik [[gravitasi]] antara Bumi dengan Bulan menyebabkan terjadinya [[pasang laut|pasang surut]] di Bumi, sedangkan Bulan mengalami [[penguncian pasang surut]] akibat fenomena yang sama; periode rotasinya sama dengan waktu yang dibutuhkan untuk mengorbit Bumi. Oleh sebab itu, Bulan selalu memperlihatkan sisi yang sama ke Bumi. Karena Bulan mengorbit Bumi, sisi Bulan yang menghadap Bumi disinari oleh Matahari, yang menyebabkan terjadinya [[fase bulan]]; sisi Bulan yang gelap tidak menerima cahaya karena terhalang oleh [[Terminator surya|terminator surya]].
 
Karena interaksi [[Pasang laut|pasang surut]] antara Bulan dan Bumi, Bulan surut dari Bumi dengan jarak sekitar 38 &nbsp;mm per tahun. Selama jutaan tahun terakhir, fenomena ini telah menyebabkan perubahan besar pada lama hari di Bumi.<ref name=espenak_meeus20070207/> Pada era [[Devonian]] (sekitar 410 juta tahun yang lalu), satu hari berlangsung selama 21,8 jam. Selain itu, lama hari di Bumi juga meningkat kurang lebih 23 [[Mikrosekon|µs]] per tahun.<ref name=hannu_poropudas19911216/>
 
Bulan diperkirakan telah memengaruhi perkembangan kehidupan dengan cara memoderasi iklim di Bumi. Bukti [[paleontologi]] dan simulasi komputer menunjukkan bahwa [[kemiringan sumbu]] Bumi distabilkan oleh interaksi pasang surut dengan Bulan.<ref name=aaa428_261/> Beberapa pakar meyakini bahwa tanpa penstabilan [[torsi]] yang dilakukan oleh Matahari dan planet lainnya terhadap tonjolan khatulistiwa Bumi, sumbu rotasi mungkin akan kacau dan tidak stabil selama jutaan tahun, seperti yang terjadi pada [[Mars]].<ref name=nature410_6830_773/>
Baris 532 ⟶ 534:
Teori mengenai asal usul Bulan yang paling diterima secara luas, yakni [[Hipotesis tubrukan besar|teori tubrukan besar]], menjelaskan bahwa Bulan terbentuk akibat pelepasan materi yang terjadi setelah tubrukan antara [[protoplanet]] seukuran Mars bernama [[Theia (planet)|Theia]] dengan Bumi. Hipotesis ini antara lain menjelaskan bahwa komposisi Bulan hampir identik dengan kerak Bumi karena terdapatnya kandungan besi dan volatil dalam jumlah kecil di Bulan.<ref name=nature412_708/>
 
[[FileBerkas:Earth Moon Scale.jpg|thumbjmpl|centerpus|800px|Skala perbandingan relatif ukuran dan jarak rata-rata antara Bulan dan Bumi.]]
 
== Asteroid dan satelit buatan ==
[[ImageBerkas:STS-130 Endeavour flyaround 5.jpg|thumbjmpl|[[Stasiun Luar Angkasa Internasional]] adalah salah satu satelit buatan yang mengorbit Bumi.]]
 
Bumi setidaknya memiliki lima [[satelit Quasi|asteroid orbital]], termasuk [[3753 Cruithne]] dan {{mpl|2002 AA|29}}.<ref name=whitehouse20021021/><ref name=christou_asher2011/> Sebuah [[Troya (astronomi)|asteroid troya]] pendamping bernama {{mpl|2010 TK|7}} menyeimbangkan diri di [[Titik Lagrange|segitiga Lagrange]], L4, pada [[orbit Bumi]] mengelilingi [[Matahari]].<ref name=Connors/><ref name=Choi/>
Baris 542 ⟶ 544:
{{clear}}
 
== Perbandingan ==
{{gallery
|lines=4
Baris 553 ⟶ 555:
}}
 
== Lihat jugapula ==
{{Wikipedia books|1=Bumi|3=Tata Surya}}
* [[Penemuan dan penjelajahan Tata Surya]]
* [[Matahari]]
* [[Dunia]]
* [[Bumi super]]
 
== Catatan ==
{{Reflist|30em|group=catatan|refs=
<ref name=apsis>aphelion = ''a'' × (1 + ''e''); perihelion = ''a'' × (1&nbsp;– ''e''), dengan ''a'' adalah sumbu semimayor dan ''e'' adalah eksentrisitas. Perbedaan antara perihelion dan aphelion Bumi adalah 5 kilometer (akurat untuk lima [[angka signifikan]]).</ref>
Baris 566 ⟶ 568:
<ref name=epoch>Semua penjumlahan astronomi bervariasi, baik [[Fenomena sekuler|sekuler]] dan periodik. Jumlah yang dinyatakan adalah [[J2000.0]] menurut perhitungan sekuler, yang mengabaikan semua perhitungan periodik.</ref>
 
<ref name=asc_node>RujukanReferensi mencantumkan bujur node menaik adalah −11.26064°, yang setara dengan 348.73936°, dengan catatan setiap sudut sama, ditambah 360°.</ref>
 
<ref name=arg_peri>RujukanReferensi mencantumkan [[Periapsis bujur|bujur perihelion]], penjumlahan dari bujur node menaik dan argumen perihelion, yang besarnya 114.20783° + (−11.26064°) = 102.94719°.</ref>
 
<ref name="Terra">Oleh [[Persatuan Astronomi Internasional]], istilah ''terra'' hanya digunakan untuk menamai benda langit dengan massa luas selain Bumi. ''Cf.'' {{cite web|last=Blue|first=Jennifer|date=2007-07-05|url=http://planetarynames.wr.usgs.gov/jsp/append5.jsp|title=Descriptor Terms (Feature Types)|work=Gazetteer of Planetary Nomenclature|publisher=USGS|accessdate=2007-07-05}}</ref>
Baris 574 ⟶ 576:
<ref name=sidereal_solar>Hari matahari lebih pendek dari [[hari sideris]] karena pergerakan orbit Bumi mengelilingi Matahari menyebabkan bertambahnya satu putaran planet pada sumbunya.</ref>
 
<ref name=surfacecover>Karena fluktuasi alami, ambiguitas di sekitar [[lapisan es]] dan konvensi pemetaan untuk [[datum vertikal]] yang menghitung nilai pasti jumkah cakupan lautan dan daratan tidak berarti. Berdasarkan data dari [[Peta Vektor]] dan [http://www.landcover.org Global Landcover] {{Webarchive|url=https://web.archive.org/web/20150326085837/http://www.landcover.org/ |date=2015-03-26 }}, nilai ekstrem cakupan danau dan sungai adalah 0,6% dan 1,0% dari permukaan Bumi. Ladang es [[Antarktika]] dan [[Greenland]] dihitung sebagai daratan, meskipun sebagian besar batuan yang menopang kedua wilayah tersebut terletak di bawah permukaan laut.</ref>
 
<ref name=jaes41_3_379> Termasuk [[Lempeng Somalia]], yang saat ini sedang dalam proses pembentukan dari Lempeng Afrika. Lihat: {{cite journal|first=Jean|last=Chorowicz|date=October 2005|title=The East African rift system|journal=Journal of African Earth Sciences|volume=43|issue=1–3|pages=379–410|doi=10.1016/j.jafrearsci.2005.07.019|bibcode = 2005JAfES..43..379C }}</ref>
 
<ref name=trench_depth> Ini adalah pengukuran yang dilakukan oleh kapal ''[[Kaikō]]'' pada bulan Maret 1995 dan diyakini merupakan pengukuran paling akurat hingga saat ini. Lihat [[Challenger Deep]] untuk penjelasan yang lebih rinci.</ref>
 
<ref name=Aoki> Aoki, sumber utama dari angka-angka ini, menggunakan istilah "detik dari UT1", bukannya "detik dari waktu matahari rata-rata".{{ndash}}{{cite journal|last=Seidelmann|first=S.|title=The new definition of universal time|url=https://archive.org/details/sim_astronomy-and-astrophysics_1982-01_105_2/page/359|journal=Astronomy and Astrophysics|year=1982|volume=105|issue=2|pages=359–361|bibcode=1982A&A...105..359A|last2=Kinoshita|first2=H.|last3=Guinot|first3=B.|last4=Kaplan|first4=G. H.|last5=McCarthy|first5=D. D.|last6=Seidelmann|first6=P. K.}}</ref>
 
<ref name=hill_radius>Untuk Bumi, [[radius Bukit]] adalah <math>R_H = a\left ( \frac{m}{3M} \right )^{\frac{1}{3}}</math>, dengan ''m'' adalah massa Bumi, ''a'' adalah Satuan Astronomi (AU), dan ''M'' massa Matahari. Jadi, radiusnya dalam AU adalah <math>\left ( \frac{1}{3 \cdot 332,946} \right )^{\frac{1}{3}} = 0.01</math>.</ref>
Baris 587 ⟶ 589:
}}
 
== Referensi ==
{{Reflist|30em|refs=
<ref name="blueplanet">{{cite journal|date=February 2009|title=Exploring the Water Cycle of the 'Blue Planet': The Soil Moisture and Ocean Salinity (SMOS) mission|journal=ESA Bulletin|publisher=[[European Space Agency]]|issue=137|pages=6–15 |url=http://www.esa.int/esapub/bulletin/bulletin137/bul137b_drinkwater.pdf |first1=Mark |last1=Drinkwater |first2=Yann |last2=Kerr |first3=Jordi |last3=Font |first4=Michael |last4=Berger |quote=A view of Earth, the 'Blue Planet'...&nbsp;When astronauts first went into the space, they looked back at our Earth for the first time, and called our home the 'Blue Planet'.}}</ref>
 
<ref name=cazenave_ahrens1995>{{cite book|first1=Anny|last1=Cazenave|authorlink=Anny Cazenave|editor=Ahrens, Thomas J|year=1995|title=Global earth physics a handbook of physical constants|publisher=American Geophysical Union|location=Washington, DC|isbn=0-87590-851-9|url=http://www.agu.org/reference/gephys/5_cazenave.pdf|archiveurl=https://web.archive.org/web/20061016024803/http://www.agu.org/reference/gephys/5_cazenave.pdf|archivedate=2006-10-16|accessdate=2008-08-03|format=PDF|chapter=Geoid, Topography and Distribution of Landforms}}</ref>
 
<ref name=hbcp2000>{{cite book|author=Various|editor=David R. Lide|year=2000|title=Handbook of Chemistry and Physics|url=https://archive.org/details/crchandbookofche0000unse_u9i8|edition=81st|publisher=CRC|isbn=0-8493-0481-4}}</ref>
 
<ref name="Cox2000">{{cite book|editor=Arthur N. Cox|title=Allen's Astrophysical Quantities|url=http://books.google.com/?id=w8PK2XFLLH8C&pg=PA244|edition=4th|year=2000|publisher=AIP Press|location=New York|isbn=0-387-98746-0|page=244|accessdate=2010-08-17}}</ref>
 
<ref name="WGS-84-2">{{cite web | first1=Sigurd | last1=Humerfelt | date=October 26, 2010 | title=How WGS 84 defines Earth | url=http://home.online.no/~sigurdhu/WGS84_Eng.html | accessdate=2011-04-29 }}</ref>
 
<ref name="yoder12">{{cite book|last1=Yoder|first1=Charles F.|editor=T. J. Ahrens|year=1995|title=Global Earth Physics: A Handbook of Physical Constants|publisher=American Geophysical Union|location=Washington|url=http://www.agu.org/reference/gephys.html|archiveurl=httphttps://replayweb.waybackmachinearchive.org/web/20090421092502/http://www.agu.org/reference/gephys.html|archivedate=20072009-0304-0821|accessdate=2007-03-17|isbn=0-87590-851-9 |page=12|dead-url=yes}}</ref>
 
<ref name=kinver20091210>{{cite news|url=http://news.bbc.co.uk/2/hi/science/nature/8406839.stm|title=Global average temperature may hit record level in 2010|last1=Kinver|first1=Mark|date=December 10, 2009|work=[[BBC Online]]|accessdate=2010-04-22}}</ref>
Baris 605 ⟶ 607:
<ref name="Pidwirny 2006_8">{{cite journal|last1=Pidwirny|first1=Michael|date=2006-02-02|title=Surface area of our planet covered by oceans and continents.(Table 8o-1)|publisher=University of British Columbia, Okanagan|url=http://www.physicalgeography.net/fundamentals/8o.html|accessdate=2007-11-26}}</ref>
 
<ref name=iers>{{cite conference|author=IERS Working Groups|editor=McCarthy, Dennis D.; Petit, Gérard|title=General Definitions and Numerical Standards|year=2003|booktitle=IERS Technical Note No. 32|publisher=U.S. Naval Observatory and Bureau International des Poids et Mesures|url=http://www.iers.org/MainDisp.csl?pid=46-25776|accessdate=2008-08-03|archive-date=2010-02-01|archive-url=https://www.webcitation.org/5nDzc2unH?url=http://www.iers.org/MainDisp.csl?pid=46-25776|dead-url=yes}}</ref>
 
<ref name=Allen294>{{cite book|title=Allen's Astrophysical Quantities|last1=Allen|first1=Clabon Walter|last2=Cox|first2=Arthur N.|publisher=Springer|year=2000|isbn=0-387-98746-0|url=http://books.google.com/?id=w8PK2XFLLH8C&pg=PA294|page=294|accessdate=2011-03-13}}</ref>
Baris 614 ⟶ 616:
 
<ref name="age_earth1">Lihat:
* {{cite book|first1=G.B.|last1=Dalrymple|year=1991|title=The Age of the Earth|url=https://archive.org/details/ageofearth00unse|publisher=Stanford University Press|location=California|isbn=0-8047-1569-6}}
* {{cite web|last=Newman|first=William L.|date=2007-07-09|url=http://pubs.usgs.gov/gip/geotime/age.html|title=Age of the Earth|publisher=Publications Services, USGS|accessdate=2007-09-20}}
* {{cite journal|last1=Dalrymple|first1=G. Brent|title=The age of the Earth in the twentieth century: a problem (mostly) solved|journal=Geological Society, London, Special Publications|year=2001|volume=190|issue=1|pages=205–221|url=http://sp.lyellcollection.org/cgi/content/abstract/190/1/205|accessdate=2007-09-20|doi = 10.1144/GSL.SP.2001.190.01.14|bibcode = 2001GSLSP.190..205D }}
Baris 622 ⟶ 624:
<ref name="Harrison 2002">{{cite book|first1=Roy M.|last1=Harrison|last2=Hester|first2=Ronald E.|year=2002|title=Causes and Environmental Implications of Increased UV-B Radiation|publisher=Royal Society of Chemistry|isbn=0-85404-265-2}}</ref>
 
<ref name=standish_williams_iau>{{cite web|last1=Standish|first1=E. Myles|last2=Williams|first2=James C.|title=Orbital Ephemerides of the Sun, Moon, and Planets|publisher=International Astronomical Union Commission 4: (Ephemerides)|url=http://iau-comm4.jpl.nasa.gov/XSChap8.pdf|format=PDF|accessdate=2010-04-03|archive-date=2012-10-14|archive-url=https://www.webcitation.org/6BOqmsTQG?url=http://iau-comm4.jpl.nasa.gov/XSChap8.pdf|dead-url=yes}} See table 8.10.2. Calculation based upon 1 AU = 149,597,870,700(3) m.</ref>
 
<ref name=carrington>{{cite news|first1=Damian|last1=Carrington|title=Date set for desert Earth|publisher=BBC News|date=2000-02-21|url=http://news.bbc.co.uk/1/hi/sci/tech/specials/washington_2000/649913.stm|accessdate=2007-03-31}}</ref>
 
<ref name=yoder1995>{{cite book|last1=Yoder|first1=Charles F.|editor=T. J. Ahrens|year=1995|title=Global Earth Physics: A Handbook of Physical Constants|publisher=American Geophysical Union|location=Washington|url=http://replay.waybackmachine.org/20090421092502/http://www.agu.org/reference/gephys.html|accessdate=2007-03-17|isbn=0-87590-851-9 |page=8|archive-date=2009-04-21|archive-url=https://web.archive.org/web/20090421092502/http://www.agu.org/reference/gephys.html|dead-url=unfit}}</ref>
 
<ref name=bowring_housch1995>{{cite journal|last1=Bowring|first1=S.|last2=Housh|first2=T.|title=The Earth's early evolution|year=1995|doi=10.1126/science.7667634|journal=Science|volume=269|pmid=7667634|issue=5230|bibcode = 1995Sci...269.1535B|pages=1535–40 }}</ref>
Baris 634 ⟶ 636:
<ref name=science310_5754_1671>{{cite journal|last1=Kleine|first1=Thorsten|last2=Palme|first2=Herbert|last3=Mezger|first3=Klaus|last4=Halliday|first4=Alex N.|title=Hf-W Chronometry of Lunar Metals and the Age and Early Differentiation of the Moon|journal=Science|volume=310|issue=5754|date=2005-11-24|pages=1671–1674|doi=10.1126/science.1118842|pmid=16308422|bibcode = 2005Sci...310.1671K }}</ref>
 
<ref name=reilly20091022>{{cite news|first1=Michael|last1=Reilly|date=October 22, 2009|title=Controversial Moon Origin Theory Rewrites History|url=http://news.discovery.com/space/moon-earth-formation.html|accessdate=2010-01-30|archive-date=2010-01-09|archive-url=https://web.archive.org/web/20100109042800/http://news.discovery.com/space/moon-earth-formation.html|dead-url=yes}}</ref>
 
<ref name=canup_asphaug2001a>{{cite conference|last1=Canup|first1=R. M.|last2=Asphaug|first2=E.|title=An impact origin of the Earth-Moon system|booktitle=Abstract #U51A-02|publisher=American Geophysical Union|date=Fall Meeting 2001|bibcode=2001AGUFM.U51A..02C}}</ref>
Baris 640 ⟶ 642:
<ref name=canup_asphaug2001b>{{cite journal|last1=Canup|first1=R.|last2=Asphaug|first2=E.|title=Origin of the Moon in a giant impact near the end of the Earth's formation|journal=Nature|volume=412|pages=708–712|year=2001|url=http://www.nature.com/nature/journal/v412/n6848/abs/412708a0.html|doi = 10.1038/35089010|pmid = 11507633|issue=6848|bibcode=2001Natur.412..708C}}</ref>
 
<ref name="watersource">{{cite journal|display-authors=1|last1=Morbidelli|first1=A.|last2=Chambers|first2=J.|last3=Lunine|first3=J. I.|last4=Petit|first4=J. M.|last5=Robert|first5=F.|last6=Valsecchi|first6=G. B.|last7=Cyr|first7=K. E.|title=Source regions and time scales for the delivery of water to Earth|url=https://archive.org/details/sim_meteoritics-planetary-science_2000-11_35_6/page/1309|journal=Meteoritics & Planetary Science|year=2000|volume=35|issue=6|pages=1309–1320|bibcode=2000M&PS...35.1309M|doi=10.1111/j.1945-5100.2000.tb01518.x}}</ref>
 
<ref name=asp2002>{{cite conference|last1=Guinan|first1=E. F.|last2=Ribas|first2=I.|editor=Benjamin Montesinos, Alvaro Gimenez and Edward F. Guinan|title=Our Changing Sun: The Role of Solar Nuclear Evolution and Magnetic Activity on Earth's Atmosphere and Climate|booktitle=ASP Conference Proceedings: The Evolving Sun and its Influence on Planetary Environments|location=San Francisco|isbn=1-58381-109-5|publisher=Astronomical Society of the Pacific|bibcode=2002ASPC..269...85G}}</ref>
Baris 646 ⟶ 648:
<ref name=physorg20100304>{{cite news|author=Staff|title=Oldest measurement of Earth's magnetic field reveals battle between Sun and Earth for our atmosphere|date=March 4, 2010|work=Physorg.news|url=http://www.physorg.com/news186922627.html|accessdate=2010-03-27}}</ref>
 
<ref name=williams_santosh2004>{{cite book|first1=John James William|last1=Rogers|last2=Santosh|first2=M.|year=2004|title=Continents and Supercontinents|url=https://archive.org/details/continentssuperc00roge|page=[https://archive.org/details/continentssuperc00roge/page/48 48]|publisher=Oxford University Press US|isbn=0-19-516589-6}}</ref>
 
<ref name=science164_1229>{{cite journal|last1=Hurley|first1=P. M.|last2=Rand|first2=J. R.|year=1969|title=Pre-drift continental nuclei|journal=Science|volume=164 |pages=1229–1242|doi=10.1126/science.164.3885.1229|pmid=17772560|month=Jun|issue=3885 |bibcode = 1969Sci...164.1229H }}</ref>
 
<ref name=rg6_175>{{cite journal|last1=Armstrong|first1=R. L.|year=1968|title=A model for the evolution of strontium and lead isotopes in a dynamic earth| journal=Reviews of Geophysics|volume=6|issue=2|pages=175–199|doi=10.1029/RG006i002p00175|bibcode=1968RvGSP...6..175A}}</ref>
 
<ref name=tp322_19>{{cite journal|doi=10.1016/S0040-1951(00)00055-X|title=Early formation and long-term stability of continents resulting from decompression melting in a convecting mantle|year=2000|last1=De Smet|first1=J.|journal=Tectonophysics|volume=322|issue=1–2|page=19|bibcode=2000Tectp.322...19D|last2=Van Den Berg|first2=A.P.|last3=Vlaar|first3=N.J.}}</ref>
Baris 658 ⟶ 660:
<ref name=jaes23_799>{{cite journal|doi=10.1016/S1367-9120(03)00134-2|title=Continental crustal growth and the supercontinental cycle: evidence from the Central Asian Orogenic Belt|year=2004|last1=Hong|first1=D.|journal=Journal of Asian Earth Sciences|volume=23|issue=5|page=799|bibcode = 2004JAESc..23..799H|last2=Zhang|first2=Jisheng|last3=Wang|first3=Tao|last4=Wang|first4=Shiguang|last5=Xie|first5=Xilin }}</ref>
 
<ref name=ajes38_613>{{cite journal|last1=Armstrong|first1=R. L.|year=1991|title=The persistent myth of crustal growth|url=https://archive.org/details/sim_australian-journal-of-earth-sciences_1991-12_38_5/page/613|journal=Australian Journal of Earth Sciences|volume=38|issue=5|pages=613–630|doi=10.1080/08120099108727995|bibcode = 1991AuJES..38..613A }}</ref>
 
<ref name=as92_324>{{cite journal|last1=Murphy|first1=J. B.|last2=Nance|first2=R. D.|title=How do supercontinents assemble?|journal=American Scientist|year=1965|volume=92|issue=4|pages=324–33|url=http://scienceweek.com/2004/sa040730-5.htm|accessdate=2007-03-05|doi=10.1511/2004.4.324}}</ref>
 
<ref name=sa282_6_90>{{cite journal|last1=Doolittle|first1=W. Ford|last2=Worm|first2=Boris|url=http://shiva.msu.montana.edu/courses/mb437_537_2005_fall/docs/uprooting.pdf|title=Uprooting the tree of life|journal=Scientific American|date=February 2000|volume=282|issue=6|pages=90–95|doi=10.1038/scientificamerican0200-90|pmid=10710791|access-date=2014-04-24|archive-date=2011-01-31|archive-url=https://www.webcitation.org/5w9oPfm4a?url=http://shiva.msu.montana.edu/courses/mb437_537_2005_fall/docs/uprooting.pdf|dead-url=yes}}</ref>
 
<ref name=jas22_3_225>{{cite journal|last1=Berkner|first1=L. V.|last2=Marshall|first2=L. C.|title=On the Origin and Rise of Oxygen Concentration in the Earth's Atmosphere|journal=Journal of Atmospheric Sciences|year=1965|volume=22|issue=3|pages=225–261|bibcode=1965JAtS...22..225B|doi=10.1175/1520-0469(1965)022<0225:OTOARO>2.0.CO;2}}</ref>
Baris 668 ⟶ 670:
<ref name=burton20021129>{{cite web|last1=Burton|first1=Kathleen|date=2002-11-29|url=http://www.nasa.gov/centers/ames/news/releases/2000/00_79AR.html|title=Astrobiologists Find Evidence of Early Life on Land|publisher=NASA|accessdate=2007-03-05}}</ref>
 
<ref name=kirschvink1992>{{cite book|last1=Kirschvink|first1=J. L.|editors=Schopf, J.W.; Klein, C. and Des Maris, D|year=1992|title=Late Proterozoic low-latitude global glaciation: the Snowball Earth|url=https://archive.org/details/proterozoicbiosp0000unse|series=The Proterozoic Biosphere: A Multidisciplinary Study|pages=51–52[https://archive.org/details/proterozoicbiosp0000unse/page/51 51]–52|publisher=Cambridge University Press|isbn=0-521-36615-1}}</ref>
 
<ref name=sci215_4539_1501>{{cite journal|last1=Raup|first1=D. M.|last2=Sepkoski Jr|first2=J. J.|title=Mass Extinctions in the Marine Fossil Record|journal=Science|year=1982|volume=215|issue=4539|pages=1501–1503|bibcode=1982Sci...215.1501R|doi =10.1126/science.215.4539.1501|pmid=17788674}}</ref>
Baris 678 ⟶ 680:
<ref name=psc>{{cite web|author=Staff|url=http://www.lakepowell.net/sciencecenter/paleoclimate.htm|title=Paleoclimatology&nbsp;– The Study of Ancient Climates|publisher=Page Paleontology Science Center|accessdate = 2007-03-02}}</ref>
 
<ref name=asu_lowest_temp>{{cite web|url=http://wmo.asu.edu/world-lowest-temperature|title=World: Lowest Temperature|work=[[WMO]] Weather and Climate Extremes Archive|publisher=[[Arizona State University]]|accessdate=2010-08-07|archive-date=2010-06-16|archive-url=https://web.archive.org/web/20100616025722/http://wmo.asu.edu/world-lowest-temperature|dead-url=yes}}</ref>
 
<ref name=asu_highest_temp>{{cite web|url=http://wmo.asu.edu/world-highest-temperature|title=World: Highest Temperature|work=[[WMO]] Weather and Climate Extremes Archive|publisher=[[Arizona State University]]|accessdate=2010-08-07|archive-date=2013-01-04|archive-url=https://web.archive.org/web/20130104143844/http://wmo.asu.edu/world-highest-temperature|dead-url=yes}}</ref>
 
<ref name="sun_future">{{cite journal|last1=Sackmann|first1=I.-J.|last2=Boothroyd|first2=A. I.|last3=Kraemer|first3=K. E.|title=Our Sun. III. Present and Future|journal=Astrophysical Journal|year=1993|volume=418|pages=457–468|doi=10.1086/173407|bibcode=1993ApJ...418..457S}}</ref>
Baris 686 ⟶ 688:
<ref name=icarus74_472>{{cite journal|last1=Kasting|first1=J.F.|year=1988|title=Runaway and Moist Greenhouse Atmospheres and the Evolution of Earth and Venus|journal=Icarus|volume=74|issue=3|pages=472–494|doi=10.1016/0019-1035(88)90116-9|bibcode=1988Icar...74..472K|pmid=11538226}}</ref>
 
<ref name=ward_brownlee2002>{{cite book|last1=Ward|first1=Peter D.|last2=Brownlee|first2=Donald|year=2002|title=The Life and Death of Planet Earth: How the New Science of Astrobiology Charts the Ultimate Fate of Our World|url=https://archive.org/details/isbn_9780805067811|publisher=Times Books, Henry Holt and Company|location=New York|isbn=0-8050-6781-7}}</ref>
 
<ref name="britt2000">{{cite web|first1=Robert|last1=Britt|url=http://replay.waybackmachine.org/20090605231345/http://www.space.com/scienceastronomy/solarsystem/death_of_earth_000224.html |title=Freeze, Fry or Dry: How Long Has the Earth Got?|date=2000-02-25|access-date=2014-02-25|archive-date=2009-06-05|archive-url=https://web.archive.org/web/20090605231345/http://www.space.com/scienceastronomy/solarsystem/death_of_earth_000224.html|dead-url=unfit}}</ref>
 
<ref name=pnas1_24_9576>{{cite journal|last1=Li|first1=King-Fai|last2=Pahlevan|first2=Kaveh|last3=Kirschvink|first3=Joseph L.|last4=Yung|first4=Yuk L.|year=2009|title=Atmospheric pressure as a natural climate regulator for a terrestrial planet with a biosphere|journal=Proceedings of the National Academy of Sciences|volume=106|issue=24|pages=9576–9579|url=http://www.gps.caltech.edu/~kfl/paper/Li_PNAS2009.pdf|accessdate=2009-07-19|doi=10.1073/pnas.0809436106|pmid=19487662|pmc=2701016|bibcode = 2009PNAS..106.9576L }}</ref>
Baris 694 ⟶ 696:
<ref name=hess5_4_569>{{cite journal|last1=Bounama|first1=Christine|year=2001|last2=Franck|first2=S.|last3=Von Bloh|first3=W.|title=The fate of Earth's ocean|journal=Hydrology and Earth System Sciences|volume=5|issue=4|pages=569–575|publisher=Potsdam Institute for Climate Impact Research|location=Germany|url=http://www.hydrol-earth-syst-sci.net/5/569/2001/hess-5-569-2001.pdf|accessdate=2009-07-03|doi=10.5194/hess-5-569-2001|bibcode=2001HESS....5..569B}}</ref>
 
<ref name="sun_future_schroder">{{cite journal|first1=K.-P.|last1=Schröder|last2=Connon Smith|first2=Robert|year=2008|title=Distant future of the Sun and Earth revisited|doi=10.1111/j.1365-2966.2008.13022.x|journal=Monthly Notices of the Royal Astronomical Society|arxiv=0801.4031|volume=386|issue=1|page=155|bibcode=2008MNRAS.386..155S}}<br>See also {{cite news|first=Jason|last=Palmer|url=http://space.newscientist.com/article/dn13369-hope-dims-that-earth-will-survive-suns-death.html?feedId=online-news_rss20|title=Hope dims that Earth will survive Sun's death|date=2008-02-22|work=NewScientist.com news service|accessdate=2008-03-24|archive-date=2008-03-17|archive-url=https://web.archive.org/web/20080317001540/http://space.newscientist.com/article/dn13369-hope-dims-that-earth-will-survive-suns-death.html?feedId=online-news_rss20|dead-url=yes}}</ref>
 
<ref name=stern20011125>{{cite web|last1=Stern|first1=David P.|date=2001-11-25|url= http://astrogeology.usgs.gov/HotTopics/index.php?/archives/147-Names-for-the-Columbia-astronauts-provisionally-approved.html|title=Planetary Magnetism|publisher=NASA|accessdate=2007-04-01|archive-date=2014-10-14|archive-url=https://web.archive.org/web/20141014175713/http://astrogeology.usgs.gov/HotTopics/index.php?%2Farchives%2F147-Names-for-the-Columbia-astronauts-provisionally-approved.html|dead-url=yes}}</ref>
 
<ref name=science288_5473_2002>{{cite journal|last1=Tackley|first1=Paul J.|title=Mantle Convection and Plate Tectonics: Toward an Integrated Physical and Chemical Theory|journal=Science|date=2000-06-16|volume=288|issue=5473|pages=2002–2007|doi=10.1126/science.288.5473.2002|pmid=10856206|bibcode = 2000Sci...288.2002T }}</ref>
Baris 706 ⟶ 708:
<ref name=nist_length2000>{{cite web|last1=Mohr|first1=P. J.|last2=Taylor|first2=B. N.|date=October 2000|url=http://physics.nist.gov/cuu/Units/meter.html|title=Unit of length (meter)|work=NIST Reference on Constants, Units, and Uncertainty|publisher=NIST Physics Laboratory|accessdate=2007-04-23}}</ref>
 
<ref name=wpba2001>{{cite web|author=Staff|date=November 2001|url=http://www.wpa-pool.com/index.asp?content=rules_spec|title=WPA Tournament Table & Equipment Specifications|publisher=World Pool-Billiards Association|accessdate=2007-03-10|archive-date=2007-02-02|archive-url=https://web.archive.org/web/20070202181203/http://www.wpa-pool.com/index.asp?content=rules_spec|dead-url=yes}}</ref>
 
<ref name=ps20_5_16>{{cite journal|last1=Senne|first1=Joseph H.|title=Did Edmund Hillary Climb the Wrong Mountain|journal=Professional Surveyor|year=2000|volume=20|issue=5|pages=16–21}}</ref>
Baris 726 ⟶ 728:
<ref name=robertson2001>{{cite web|last1=Robertson|first1=Eugene C.|date=2001-07-26|url=http://pubs.usgs.gov/gip/interior/|title=The Interior of the Earth|publisher=USGS|accessdate=2007-03-24}}</ref>
 
<ref name="turcotte">{{cite book|last1=Turcotte|first1=D. L.|last2=Schubert|first2=G.|title=Geodynamics|url=https://archive.org/details/geodynamics00dltu|publisher=Cambridge University Press|location=Cambridge, England, UK| year=2002|edition=2|pages=136–137[https://archive.org/details/geodynamics00dltu/page/136 136]–137|chapter=4|isbn=978-0-521-66624-4}}</ref>
 
<ref name=sanders20031210>{{cite news|first1=Robert|last1=Sanders|title=Radioactive potassium may be major heat source in Earth's core|publisher=UC Berkeley News|date=2003-12-10|url=http://www.berkeley.edu/news/media/releases/2003/12/10_heat.shtml|accessdate=2007-02-28}}</ref>
Baris 732 ⟶ 734:
<ref name=ptrsl360_1795_1227>{{cite journal|last1=Alfè|first1=D.|last2=Gillan|first2=M. J.|last3=Vocadlo|first3=L.|last4=Brodholt|first4=J.|last5=Price|first5=G. D.|title=The ''ab initio'' simulation of the Earth's core|journal= Philosophical Transactions of the Royal Society|year=2002|volume=360|issue=1795|pages=1227–1244|url=http://chianti.geol.ucl.ac.uk/~dario/pubblicazioni/PTRSA2002.pdf|format=PDF|accessdate=2007-02-28|doi=10.1098/rsta.2002.0992|bibcode = 2002RSPTA.360.1227A }}</ref>
 
<ref name=epsl121_1>{{cite journal|last1=Vlaar|first1=N|title=Cooling of the Earth in the Archaean: Consequences of pressure-release melting in a hotter mantle|year=1994|journal=Earth and Planetary Science Letters|volume=121|issue=1–2|page=1|doi=10.1016/0012-821X(94)90028-0|coauthors=Vankeken, P.; Vandenberg, A. |url=http://www.geo.lsa.umich.edu/~keken/papers/Vlaar_EPSL94.pdf |format=PDF|bibcode=1994E&PSL.121....1V|access-date=2014-04-24|archive-date=2012-03-19|archive-url=https://web.archive.org/web/20120319181621/http://www.geo.lsa.umich.edu/~keken/papers/Vlaar_EPSL94.pdf|dead-url=yes}}</ref>
 
<ref name="T&S 137">{{cite book|last1=Turcotte|first1=D. L.|last2=Schubert|first2=G.|title=Geodynamics|url=https://archive.org/details/geodynamics00dltu|publisher=Cambridge University Press|location=Cambridge, England, UK|year=2002|edition=2|page=[https://archive.org/details/geodynamics00dltu/page/137 137]|chapter=4|isbn=978-0-521-66624-4}}</ref>
 
<ref name="heat loss">{{cite journal|doi=10.1029/JB086iB12p11535|title=Oceans and Continents: Similarities and Differences in the Mechanisms of Heat Loss|year=1981|last1=Sclater|first1=John G|journal=Journal of Geophysical Research|volume=86|issue=B12 |page=11535|coauthors=Parsons, Barry; Jaupart, Claude|bibcode=1981JGR....8611535S}}</ref>
 
<ref name=science246_4926_103>{{cite journal|last1=Richards|first1=M. A.|last2=Duncan|first2=R. A.|last3=Courtillot|first3=V. E.|title=Flood Basalts and Hot-Spot Tracks: Plume Heads and Tails|journal=Science|year=1989|volume=246|issue=4926|pages=103–107|bibcode=1989Sci...246..103R|doi=10.1126/science.246.4926.103|pmid=17837768}}</ref>
 
<ref name=brown_wohletz2005>{{cite web|last1=Brown|first1=W. K.|last2=Wohletz|first2=K. H.|year=2005|url=http://www.ees1.lanl.gov/Wohletz/SFT-Tectonics.htm|title=SFT and the Earth's Tectonic Plates|publisher=Los Alamos National Laboratory|accessdate=2007-03-02|archive-date=2013-02-17|archive-url=https://web.archive.org/web/20130217002443/http://www.ees1.lanl.gov/Wohletz/SFT-Tectonics.htm|dead-url=yes}}</ref>
 
<ref name=kious_tilling1999>{{cite web|last1=Kious|first1=W. J.|last2=Tilling|first2=R. I.|date=1999-05-05|url=http://pubs.usgs.gov/gip/dynamic/understanding.html|title=Understanding plate motions|publisher=USGS|accessdate=2007-03-02}}</ref>
Baris 752 ⟶ 754:
<ref name=cmp134_3>{{cite journal|doi=10.1007/s004100050465|title=Priscoan (4.00–4.03 Ga) orthogneisses from northwestern Canada|year=1999|last1=Bowring|first1=Samuel A.|journal=Contributions to Mineralogy and Petrology|volume=134|issue=1|page=3|last2=Williams|first2=Ian S.|bibcode = 1999CoMP..134....3B }}</ref>
 
<ref name=podp2000>{{cite web|last1=Meschede|first1=Martin|last2=Barckhausen|first2=Udo |date=2000-11-20|url=http://www-odp.tamu.edu/publications/170_SR/chap_07/chap_07.htm|title=Plate Tectonic Evolution of the Cocos-Nazca Spreading Center|work=Proceedings of the Ocean Drilling Program|publisher=Texas A&M University|accessdate=2007-04-02}}</ref>
 
<ref name=gps_time_series>{{cite web|author=Staff|url=http://sideshow.jpl.nasa.gov/mbh/series.html|title=GPS Time Series|publisher=NASA JPL|accessdate=2007-04-02|archive-date=2011-08-22|archive-url=https://www.webcitation.org/617Egjmvj?url=http://sideshow.jpl.nasa.gov/mbh/series.html|dead-url=yes}}</ref>
 
<ref name="Pidwirny2006_7">{{cite web|last1=Pidwirny|first1=Michael|year=2006|url=http://www.physicalgeography.net/fundamentals/7h.html|title=Fundamentals of Physical Geography (2nd Edition)|publisher=PhysicalGeography.net|accessdate=2007-03-19}}</ref>
Baris 760 ⟶ 762:
<ref name=kring>{{cite web|last1=Kring|first1=David A|url=http://www.lpi.usra.edu/science/kring/epo_web/impact_cratering/intro/|title=Terrestrial Impact Cratering and Its Environmental Effects|publisher=Lunar and Planetary Laboratory|accessdate=2007-03-22}}</ref>
 
<ref name=layers_earth>{{cite web|author=Staff|url=http://volcano.oregonstate.edu/vwdocs/vwlessons/plate_tectonics/part1.html|title=Layers of the Earth|publisher=Volcano World|accessdate=2007-03-11|archive-date=2013-01-19|archive-url=https://www.webcitation.org/6DnLWg22n?url=http://volcano.oregonstate.edu/vwdocs/vwlessons/plate_tectonics/part1.html|dead-url=yes}}</ref>
 
<ref name=jessey>{{cite web|last1=Jessey|first1=David|url=http://geology.csupomona.edu/drjessey/class/Gsc101/Weathering.html|title=Weathering and Sedimentary Rocks|publisher=Cal Poly Pomona|accessdate=2007-03-20|archive-date=2007-07-03|archive-url=https://web.archive.org/web/20070703170212/http://geology.csupomona.edu/drjessey/class/Gsc101/Weathering.html|dead-url=yes}}</ref>
 
<ref name=de_pater_lissauer2010>{{cite book|last1=de Pater|first1=Imke|last2=Lissauer|first2=Jack J.|title=Planetary Sciences|page=154|edition=2nd|publisher=Cambridge University Press|year=2010|isbn=0-521-85371-0}}</ref>
Baris 768 ⟶ 770:
<ref name=wekn_bulakh2004>{{cite book|last1=Wenk|first1=Hans-Rudolf|last2=Bulakh|first2=Andreĭ Glebovich|title=Minerals: their constitution and origin|page=359|publisher=Cambridge University Press|year=2004|isbn=0-521-52958-1}}</ref>
 
<ref name=cia>{{cite web|author=Staff|date=2008-07-24|url=https://www.cia.gov/library/publications/the-world-factbook/geos/xx.html|title=World|work=The World Factbook|publisher=Central Intelligence Agency|accessdate=2008-08-05|archive-date=2010-01-05|archive-url=https://web.archive.org/web/20100105171656/https://www.cia.gov/library/publications/the-world-factbook/geos/xx.html|dead-url=yes}}</ref>
 
<ref name=fao1994>{{cite book|author=FAO Staff|year=1995|title=FAO Production Yearbook 1994|edition=Volume 48|publisher=Food and Agriculture Organization of the United Nations|location=Rome, Italy|isbn=92-5-003844-5}}</ref>
Baris 774 ⟶ 776:
<ref name=sverdrup>{{cite book|first1=H. U.|last1=Sverdrup|last2=Fleming|first2=Richard H.|date=1942-01-01|title=The oceans, their physics, chemistry, and general biology|publisher=Scripps Institution of Oceanography Archives|url=http://repositories.cdlib.org/sio/arch/oceans/|accessdate=2008-06-13|isbn=0-13-630350-1}}</ref>
 
<ref name=kaiko7000>{{cite web|title=7,000&nbsp;m Class Remotely Operated Vehicle ''KAIKO 7000''|url=http://www.jamstec.go.jp/e/about/equipment/ships/kaiko7000.html|publisher=Japan Agency for Marine-Earth Science and Technology (JAMSTEC)|accessdate=2008-06-07|archive-date=2020-04-10|archive-url=https://web.archive.org/web/20200410211118/http://www.jamstec.go.jp/e/about/equipment/ships/kaiko7000.html|dead-url=yes}}</ref>
 
<ref name=ocean23_2_112>{{Cite journal|last1=Charette|first1=Matthew A.|last2=Smith|first2=Walter H. F.|title=The Volume of Earth's Ocean|journal=Oceanography|volume=23|issue=2|pages=112–114|date=June 2010|url=http://www.tos.org/oceanography/archive/23-2_charette.pdf|accessdate=2013-06-06|doi=10.5670/oceanog.2010.51|archive-date=2013-11-02|archive-url=https://web.archive.org/web/20131102230333/http://www.tos.org/oceanography/archive/23-2_charette.pdf|dead-url=yes}}</ref>
 
<ref name=shiklomanov_et_al_1999>{{cite web|last1=Shiklomanov|first1=Igor A.|year=1999|url=http://webworld.unesco.org/water/ihp/db/shiklomanov/|title=World Water Resources and their use Beginning of the 21st century Prepared in the Framework of IHP UNESCO|publisher=State Hydrological Institute, St. Petersburg|accessdate=2006-08-10|archive-date=2013-04-03|archive-url=https://www.webcitation.org/6FbsxLE2m?url=http://webworld.unesco.org/water/ihp/db/shiklomanov/|dead-url=yes}}</ref>
 
<ref name=kennish2001>{{cite book|first1=Michael J.|last1=Kennish|year=2001|title=Practical handbook of marine science|url=https://archive.org/details/practicalhandboo0000unse_f2m3|page=[https://archive.org/details/practicalhandboo0000unse_f2m3/page/35 35]|edition=3rd|publisher=CRC Press|series=Marine science series|isbn=0-8493-2391-6}}</ref>
 
<ref name=mullen2002>{{cite web|last1=Mullen|first1=Leslie|date=2002-06-11|url=http://www.astrobio.net/news/article223.html|title=Salt of the Early Earth|publisher=NASA Astrobiology Magazine|accessdate=2007-03-14}}</ref>
 
<ref name=natsci_oxy4>{{cite web|last1=Morris|first1=Ron M|url=http://replay.waybackmachine.org/20090415082741/http://seis.natsci.csulb.edu/rmorris/oxy/oxy4.html|title=Oceanic Processes|publisher=NASA Astrobiology Magazine|accessdate=2007-03-14|archive-date=2009-04-15|archive-url=https://web.archive.org/web/20090415082741/http://seis.natsci.csulb.edu/rmorris/oxy/oxy4.html|dead-url=unfit}}</ref>
 
<ref name=michon2006>{{cite web|last1=Scott|first1=Michon|date=2006-04-24|url=http://earthobservatory.nasa.gov/Study/HeatBucket/|title=Earth's Big heat Bucket|publisher=NASA Earth Observatory|accessdate=2007-03-14}}</ref>
 
<ref name=sample2005>{{cite web|first1=Sharron|last1=Sample|date=2005-06-21|url=http://science.hq.nasa.gov/oceans/physical/SST.html|title=Sea Surface Temperature|publisher=NASA|accessdate=2007-04-21|archive-date=2008-04-08|archive-url=https://web.archive.org/web/20080408000148/http://science.hq.nasa.gov/oceans/physical/SST.html|dead-url=yes}}</ref>
 
<ref name=geerts_linacre97>{{cite web|last1=Geerts|first1=B.|last2=Linacre|first2=E.|url=http://www-das.uwyo.edu/~geerts/cwx/notes/chap01/tropo.html|title=The height of the tropopause|date=November 1997|work=Resources in Atmospheric Sciences|publisher=University of Wyoming|accessdate=2006-08-10}}</ref>
Baris 794 ⟶ 796:
<ref name="atmosphere">{{cite web|author=Staff|date=2003-10-08|url=http://www.nasa.gov/audience/forstudents/9-12/features/912_liftoff_atm.html|title=Earth's Atmosphere|publisher=NASA|accessdate=2007-03-21}}</ref>
 
<ref name="moran2005">{{cite web|last1=Moran|first1=Joseph M.|year=2005|url=http://www.nasa.gov/worldbook/weather_worldbook.html|title=Weather|work=World Book Online Reference Center|publisher=NASA/World Book, Inc|accessdate=2007-03-17|archive-date=2005-08-24|archive-url=https://web.archive.org/web/20050824173649/http://www.nasa.gov/worldbook/weather_worldbook.html|dead-url=yes}}</ref>
 
<ref name="berger2002">{{cite web|last1=Berger|first1=Wolfgang H.|year=2002|url=http://earthguide.ucsd.edu/virtualmuseum/climatechange1/cc1syllabus.shtml|title=The Earth's Climate System|publisher=University of California, San Diego|accessdate=2007-03-24}}</ref>
Baris 800 ⟶ 802:
<ref name=rahmstorf2003>{{cite web|first1=Stefan|last1=Rahmstorf|year=2003|url =http://www.pik-potsdam.de/~stefan/thc_fact_sheet.html|title =The Thermohaline Ocean Circulation|publisher=Potsdam Institute for Climate Impact Research|accessdate=2007-04-21}}</ref>
 
<ref name=hydrologic_cycle>{{cite web|author=Various|date=1997-07-21|url=http://ww2010.atmos.uiuc.edu/(Gh)/guides/mtr/hyd/home.rxml|title=The Hydrologic Cycle|publisher=University of Illinois|accessdate=2007-03-24|archive-date=2020-04-27|archive-url=https://web.archive.org/web/20200427090734/http://ww2010.atmos.uiuc.edu/(Gh)/guides/mtr/hyd/home.rxml|dead-url=yes}}</ref>
 
<ref name=sadava_heller2006>{{cite book|last1=Sadava|first1=David E.|last2=Heller|first2=H. Craig|last3=Orians|first3=Gordon H.|title=Life, the Science of Biology|publisher=MacMillan|year=2006|edition=8th|page=1114|isbn=0-7167-7671-5}}</ref>
 
<ref name=climate_zones>{{cite web|author=Staff|url=http://www.ace.mmu.ac.uk/eae/Climate/Older/Climate_Zones.html|title=Climate Zones|publisher=UK Department for Environment, Food and Rural Affairs|accessdate=2007-03-24|archive-date=2010-08-08|archive-url=https://web.archive.org/web/20100808131632/http://www.ace.mmu.ac.uk/eae/climate/older/Climate_Zones.html|dead-url=yes}}</ref>
 
<ref name=sciweek2004>{{cite web|author=Staff|year=2004|url=http://scienceweek.com/2004/rmps-23.htm|title=Stratosphere and Weather; Discovery of the Stratosphere|publisher=Science Week|accessdate=2007-03-14}}</ref>
 
<ref name=cordoba2004>{{cite web|first1=S. Sanz Fernández|last1=de Córdoba|date=2004-06-21|url=http://www.fai.org/astronautics/100km.asp|title=Presentation of the Karman separation line, used as the boundary separating Aeronautics and Astronautics|publisher=Fédération Aéronautique Internationale|accessdate=2007-04-21|archive-date=2011-07-09|archive-url=https://web.archive.org/web/20110709114431/http://www.fai.org/astronautics/100km.asp|dead-url=yes}}</ref>
 
<ref name=jas31_4_1118>{{cite journal|last1=Liu|first1=S. C.|last2=Donahue|first2=T. M.|title=The Aeronomy of Hydrogen in the Atmosphere of the Earth|journal=Journal of Atmospheric Sciences|year=1974|volume=31|issue=4|pages=1118–1136|bibcode=1974JAtS...31.1118L|doi=10.1175/1520-0469(1974)031<1118:TAOHIT>2.0.CO;2}}</ref>
Baris 814 ⟶ 816:
<ref name=sci293_5531_839>{{cite journal|title=Biogenic Methane, Hydrogen Escape, and the Irreversible Oxidation of Early Earth|last1=Catling|first1=David C.|last2=Zahnle|first2=Kevin J.|last3=McKay|first3=Christopher P.|journal=Science|volume=293|issue=5531|pages=839–843|url=http://www.sciencemag.org/cgi/content/full/293/5531/839|doi=10.1126/science.1061976|year=2001|pmid=11486082|bibcode = 2001Sci...293..839C }}</ref>
 
<ref name=abedon1997>{{cite web|last1=Abedon|first1=Stephen T.|date=1997-03-31|url=http://www.mansfield.ohio-state.edu/~sabedon/biol1010.htm|title=History of Earth|publisher=Ohio State University|accessdate=2007-03-19|archive-date=2013-03-10|archive-url=https://www.webcitation.org/6F17z629O?url=http://www.mansfield.ohio-state.edu/~sabedon/biol1010.htm|dead-url=yes}}</ref>
 
<ref name=arwps4_265>{{cite journal|last1=Hunten|first1=D. M.|title=Hydrogen loss from the terrestrial planets|journal=Annual review of earth and planetary sciences|year=1976|volume=4|issue=1|pages=265–292|bibcode=1976AREPS...4..265H|doi=10.1146/annurev.ea.04.050176.001405|last2=Donahue|first2=T. M}}</ref>
Baris 822 ⟶ 824:
<ref name=campbelwh>{{cite book|last1=Campbell|first1=Wallace Hall|title=Introduction to Geomagnetic Fields|publisher=Cambridge University Press|year=2003|location=New York|page=57|isbn=0-521-82206-8}}</ref>
 
<ref name=stern2005>{{cite web|last1=Stern|first1=David P.|date=2005-07-08|url=http://www-spof.gsfc.nasa.gov/Education/wmap.html|title=Exploration of the Earth's Magnetosphere|publisher=NASA|accessdate=2007-03-21|archive-date=2013-04-28|archive-url=https://www.webcitation.org/6GCk917YE?url=http://www-spof.gsfc.nasa.gov/Education/wmap.html|dead-url=yes}}</ref>
 
<ref name=USNO_TSD>{{cite web|title=Leap seconds|publisher=Time Service Department, USNO|url=http://tycho.usno.navy.mil/leapsec.html|accessdate=2008-09-23|archive-date=2012-05-27|archive-url=https://www.webcitation.org/67yIZgtef?url=http://tycho.usno.navy.mil/leapsec.html|dead-url=yes}}</ref>
 
<ref name=IERS>{{cite web|author=Staff|date=2007-08-07|url=http://hpiers.obspm.fr/eop-pc/models/constants.html|title=Useful Constants|publisher=[[International Earth Rotation and Reference Systems Service]]| accessdate=2008-09-23}}</ref>
 
<ref name=seidelmann1992>{{cite book|last1=Seidelmann|first1=P. Kenneth|year=1992|title=Explanatory Supplement to the Astronomical Almanac|url=https://archive.org/details/explanatorysuppl0003unse|page=[https://archive.org/details/explanatorysuppl0003unse/page/n79 48]|publisher=University Science Books|location=Mill Valley, CA|isbn=0-935702-68-7}}</ref>
 
<ref name=iers1623>{{cite web|author=Staff|url=http://hpiers.obspm.fr/eop-pc/earthor/ut1lod/lod-1623.html|title=IERS Excess of the duration of the day to 86400s&nbsp;... since 1623|publisher=International Earth Rotation and Reference Systems Service (IERS)|accessdate=2008-09-23|archive-date=2008-10-03|archive-url=https://web.archive.org/web/20081003083543/http://hpiers.obspm.fr/eop-pc/earthor/ut1lod/lod-1623.html|dead-url=yes}}—Graph at end.</ref>
 
<ref name=iers1962>{{cite web|author=Staff|url=http://hpiers.obspm.fr/eop-pc/earthor/ut1lod/figure3.html|archiveurl=https://web.archive.org/web/20070813203913/http://hpiers.obspm.fr/eop-pc/earthor/ut1lod/figure3.html|archivedate=2007-08-13|title=IERS Variations in the duration of the day 1962–2005|publisher=International Earth Rotation and Reference Systems Service (IERS)|accessdate=2008-09-23}}</ref>
 
<ref name=zeilik1998>{{cite book|last1=Zeilik|first1=M.|last2=Gregory|first2=S. A.|title=Introductory Astronomy & Astrophysics|url=https://archive.org/details/introductoryastr0000zeil|edition=4th|page=[https://archive.org/details/introductoryastr0000zeil/page/56 56]|publisher=Saunders College Publishing|isbn=0-03-006228-4|year=1998}}</ref>
 
<ref name=angular>{{cite web|last1=Williams|first1=David R.|date=2006-02-10|url=http://nssdc.gsfc.nasa.gov/planetary/planetfact.html|title=Planetary Fact Sheets|publisher=NASA|accessdate=2008-09-28}}—See the apparent diameters on the Sun and Moon pages.</ref>
 
<ref name="earth_fact_sheetearth fact sheet">{{cite web|last1=Williams|first1=David R.|date=2004-09-01|url=httphttps://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html |title=Earth Fact Sheet |publisher=NASA/Goddard Space Flight Center |first=David R. |last=Williams |date=16 Maret 2017 |accessdate=2010-08-0926 Juli 2018}}</ref>
 
<ref name="moon_fact_sheet">{{cite web|last1=Williams|first1=David R.|date=2004-09-01|url=http://nssdc.gsfc.nasa.gov/planetary/factsheet/moonfact.html|title=Moon Fact Sheet|publisher=NASA|accessdate=2007-03-21}}</ref>
 
<ref name=vazquez_etal2006>{{cite web|last1=Vázquez|first1=M.|first2=P. Montañés|last2=Rodríguez|last3=Palle|first3=E.|year=2006|url =http://www.iac.es/folleto/research/preprints/files/PP06024.pdf|title=The Earth as an Object of Astrophysical Interest in the Search for Extrasolar Planets|publisher=Instituto de Astrofísica de Canarias|accessdate=2007-03-21 |format=PDF}}</ref>
 
<ref name=nasa20051201>{{cite web|author=Astrophysicist team|date=2005-12-01|url=http://imagine.gsfc.nasa.gov/docs/ask_astro/answers/030827a.html|title=Earth's location in the Milky Way|publisher=NASA|accessdate=2008-06-11}}</ref>
Baris 848 ⟶ 850:
<ref name=bromberg2008>{{cite web|last1=Bromberg|first1=Irv|date=2008-05-01|url=http://www.sym454.org/seasons/|title=The Lengths of the Seasons (on Earth)|publisher=University of Toronto|accessdate=2008-11-08}}</ref>
 
<ref name=lin2006>{{cite web|first1=Haosheng|last1=Lin|title=Animation of precession of moon orbit|work=Survey of Astronomy AST110-6|year=2006|publisher=University of Hawaii at Manoa|url=http://www.ifa.hawaii.edu/users/lin/ast110-6/applets/precession_of_moon_orbit.htm |accessdate=2010-09-10}}</ref>
 
<ref name=williams20051230>{{cite web|last1=Williams|first1=Jack|date=2005-12-20|url=http://www.usatoday.com/weather/tg/wseason/wseason.htm|title=Earth's tilt creates seasons|publisher=USAToday|accessdate=2007-03-17}}</ref>
 
<ref name=fisher19960205>{{cite web|last1=Fisher|first1=Rick|date=1996-02-05|url=http://www.cv.nrao.edu/~rfisher/Ephemerides/earth_rot.html|title=Earth Rotation and Equatorial Coordinates|publisher=National Radio Astronomy Observatory|accessdate=2007-03-21|archive-date=2011-08-22|archive-url=https://www.webcitation.org/617EkMYXJ?url=http://www.cv.nrao.edu/~rfisher/Ephemerides/earth_rot.html|dead-url=yes}}</ref>
 
<ref name=espenak_meeus20070207>{{cite web|last1=Espenak|first1=F.|last2=Meeus|first2=J.|date=2007-02-07|url=http://sunearth.gsfc.nasa.gov/eclipse/SEcat5/secular.html|title=Secular acceleration of the Moon|publisher=NASA|accessdate=2007-04-20|archiveurl=https://archive.today/20121205022046/http://eclipse.gsfc.nasa.gov/SEcat5/secular.html|archivedate=2012-12-05|dead-url=yes}}</ref>
 
<ref name=hannu_poropudas19911216>{{cite web|first1=Hannu K. J.|last1=Poropudas|date=1991-12-16|url=http://www.skepticfiles.org/origins/coralclo.htm|title=Using Coral as a Clock|publisher=Skeptic Tank|accessdate = 2007-04-20}}</ref>
Baris 869 ⟶ 871:
<ref name=whitehouse20021021>{{cite news|first1=David|last1=Whitehouse|title=Earth's little brother found|publisher=BBC News|date=2002-10-21|url=http://news.bbc.co.uk/1/hi/sci/tech/2347663.stm|accessdate=2007-03-31}}</ref>
 
<ref name=ab2003>{{cite web|author=Staff|date=September 2003|url=http://astrobiology.arc.nasa.gov/roadmap/g1.html|title=Astrobiology Roadmap|publisher=NASA, Lockheed Martin|accessdate=2007-03-10|archive-date=2011-01-17|archive-url=https://web.archive.org/web/20110117011137/http://astrobiology.arc.nasa.gov/roadmap/g1.html|dead-url=yes}}</ref>
 
<ref name=dole1970>{{cite book|first1=Stephen H.|last1=Dole|year=1970|title=Habitable Planets for Man|edition=2nd|publisher=American Elsevier Publishing Co|url=http://www.rand.org/pubs/reports/R414/|accessdate=2007-03-11|isbn=0-444-00092-5}}</ref>
 
<ref name=amnat163_2_192>{{cite journal|last1=Hillebrand|first1=Helmut|title=On the Generality of the Latitudinal Gradient|url=https://archive.org/details/sim_american-naturalist_2004-02_163_2/page/192|journal=American Naturalist|year=2004|volume=163|issue=2|pages=192–211|doi=10.1086/381004|pmid=14970922}}</ref>
 
<ref name=mnpl_utx2006>{{cite web|author=Staff|date=2006-11-24|url=http://www.utexas.edu/tmm/npl/mineralogy/mineral_genesis/|title=Mineral Genesis: How do minerals form?|publisher=Non-vertebrate Paleontology Laboratory, Texas Memorial Museum|accessdate=2007-04-01}}</ref>
Baris 879 ⟶ 881:
<ref name=science299_5607_673>{{cite journal|last1=Rona|first1=Peter A.|title=Resources of the Sea Floor|journal=Science|year=2003|volume=299|issue=5607|pages=673–674|url=http://www.sciencemag.org/cgi/content/full/299/5607/673?ijkey=AHVbRrqUsmdHY&keytype=ref&siteid=sci|accessdate=2007-02-04|doi = 10.1126/science.1080679|pmid = 12560541}}</ref>
 
<ref name=un20070202>{{cite web|author=Staff|date = 2007-02-02|url=http://www.un.org/apps/news/story.asp?NewsID=21429&Cr=climate&Cr1=change|title=Evidence is now 'unequivocal' that humans are causing global warming&nbsp;– UN report|publisher=United Nations|accessdate=2007-03-07|archiveurl=httphttps://replayweb.waybackmachinearchive.org/web/20081221031717/http://www.un.org/apps/news/story.asp?NewsID=21429&Cr=climate&Cr1=change|archivedate=21 December 2008-12-21|dead-url=no}}</ref>
 
<ref name="World_Population_Clock">{{cite web |author=[[United States Census Bureau]] |url=http://www.census.gov/population/popclockworld.html |title=World POP Clock Projection |work=United States Census Bureau International Database |date=2 November 2011 |accessdate= 2011-11-02 }}</ref>
 
<ref name=un2006>{{cite web|author=Staff|url=http://www.un.org/esa/population/publications/wpp2006/wpp2006.htm|archiveurl=httphttps://replayweb.waybackmachinearchive.org/web/20090905200753/http://www.un.org/esa/population/publications/wpp2006/wpp2006.htm|archivedate=5 September 2009-09-05|title=World Population Prospects: The 2006 Revision|publisher=United Nations|accessdate=2007-03-07|dead-url=no}}</ref>
 
<ref name=prb2007>{{cite web|author=Staff|year=2007|url=http://www.prb.org/Educators/TeachersGuides/HumanPopulation/PopulationGrowth/QuestionAnswer.aspx|title=Human Population: Fundamentals of Growth: Growth|publisher=Population Reference Bureau|accessdate=2007-03-31|archive-date=2013-02-10|archive-url=https://www.webcitation.org/6EKxj3SWs?url=http://www.prb.org/Educators/TeachersGuides/HumanPopulation/PopulationGrowth/QuestionAnswer.aspx|dead-url=yes}}</ref>
 
<ref name=hessd4_439>{{cite journal|last1=Peel|first1=M. C.|last2=Finlayson|first2=B. L.|last3=McMahon|first3=T. A.|title=Updated world map of the Köppen-Geiger climate classification|journal=Hydrology and Earth System Sciences Discussions|year=2007|volume=4|issue=2|pages=439–473|url=http://www.hydrol-earth-syst-sci-discuss.net/4/439/2007/hessd-4-439-2007.html|accessdate=2007-03-31|doi=10.5194/hessd-4-439-2007}}</ref>
 
<ref name=biodiv>{{cite web|author=Staff|url=http://www.biodiv.org/programmes/default.shtml|title=Themes & Issues|publisher=Secretariat of the Convention on Biological Diversity|accessdate=2007-03-29|archive-date=2007-04-07|archive-url=https://web.archive.org/web/20070407011249/http://www.biodiv.org/programmes/default.shtml|dead-url=yes}}</ref>
 
<ref name=cfsa2006>{{cite web|author=Staff|date=2006-08-15|url=http://www.tscm.com/alert.html|title=Canadian Forces Station (CFS) Alert|publisher=Information Management Group|accessdate=2007-03-31}}</ref>
Baris 895 ⟶ 897:
<ref name=kennedy1989>{{cite book|first1=Paul|last1=Kennedy|authorlink1=Paul Kennedy|year=1989|title=[[The Rise and Fall of the Great Powers]]|edition=1st|publisher=Vintage|isbn=0-679-72019-7}}</ref>
 
<ref name=uncharter>{{cite web|url=http://www.un.org/aboutun/charter/|title=U.N. Charter Index|publisher=United Nations|accessdate=2008-12-23|archiveurl=httphttps://replayweb.waybackmachinearchive.org/web/20090220011242/http://www.un.org/aboutun/charter/|archivedate=20 February 2009-02-20|dead-url=no}}</ref>
 
<ref name=un_int_law>{{cite web|author=Staff|url=http://www.un.org/law/|title=International Law|publisher=United Nations|accessdate=2007-03-27|archiveurl=httphttps://replayweb.waybackmachinearchive.org/web/20081231055149/http://www.un.org/law/|archivedate=2008-12-31 December 2009|dead-url=no}}</ref>
 
<ref name=kuhn2006>{{cite book|first1=Betsy|last1=Kuhn|year=2006|title=The race for space: the United States and the Soviet Union compete for the new frontier|url=https://archive.org/details/raceforspaceunit0000kuhn|page=[https://archive.org/details/raceforspaceunit0000kuhn/page/34 34]|publisher=Twenty-First Century Books|isbn=0-8225-5984-6}}</ref>
 
<ref name=ellis2004>{{cite book|first1=Lee|last1=Ellis|year=2004|title=Who's who of NASA Astronauts|url=https://archive.org/details/whoswhoofnasaast0000elli|publisher=Americana Group Publishing|isbn=0-9667961-4-4}}</ref>
 
<ref name=shayler_vis2005>{{cite book|first1=David|last1=Shayler|first2=Bert|last2=Vis|year=2005|title=Russia's Cosmonauts: Inside the Yuri Gagarin Training Center|publisher=Birkhäuser|isbn=0-387-21894-7}}</ref>
Baris 917 ⟶ 919:
<ref name=Dutch2002>{{cite journal|last1=Dutch|first1=S. I.|year=2002|title=Religion as belief versus religion as fact|journal=Journal of Geoscience Education|volume=50|issue=2|pages=137–144|url=http://nagt.org/files/nagt/jge/abstracts/Dutch_v50n2p137.pdf|accessdate=2008-04-28|format=PDF}}</ref>
 
<ref name=edis2003>{{cite book|first1=Taner|last1=Edis|year=2003|title=A World Designed by God: Science and Creationism in Contemporary Islam|publisher=Amherst: Prometheus|url=http://www2.truman.edu/~edis/writings/articles/CFI-2001.pdf|isbn=1-59102-064-6|accessdate=2008-04-28|format=PDF|archive-date=2008-05-27|archive-url=https://web.archive.org/web/20080527192629/http://www2.truman.edu/~edis/writings/articles/CFI-2001.pdf|dead-url=yes}}</ref>
 
<ref name=jge53_3_319>{{cite journal|last1=Ross|first1=M. R.|year=2005|title=Who Believes What? Clearing up Confusion over Intelligent Design and Young-Earth Creationism|journal=Journal of Geoscience Education|volume=53|issue=3|page=319|url=http://www.nagt.org/files/nagt/jge/abstracts/Ross_v53n3p319.pdf|accessdate=2008-04-28|format=PDF}}</ref>
Baris 925 ⟶ 927:
<ref name=sec_nap2008>{{cite book|author=National Academy of Sciences, Institute of Medicine|title=Science, Evolution, and Creationism|url=http://books.nap.edu/openbook.php?record_id=11876&page=R1|year=2008|publisher=National Academies Press|location=Washington, D.C|isbn=0-309-10586-2|accessdate=2011-03-13}}</ref>
 
<ref name=jrst43_4_419>{{cite journal|last1=Colburn,|first1=A.|last2=Henriques|first2=Laura|year=2006|title=Clergy views on evolution, creationism, science, and religion|url=https://archive.org/details/sim_journal-of-research-in-science-teaching_2006-04_43_4/page/419|journal=Journal of Research in Science Teaching|volume=43|issue=4|pages=419–442|doi=10.1002/tea.20109|bibcode = 2006JRScT..43..419C }}</ref>
 
<ref name=frye1983>{{cite book|last1=Frye|first1=Roland Mushat|year = 1983|title=Is God a Creationist? The Religious Case Against Creation-Science|url=https://archive.org/details/isgodcreationist001946|publisher=Scribner's|isbn=0-684-17993-8}}</ref>
 
<ref name=nathist106_2_16>{{cite journal|last1=Gould|first1=S. J.|year=1997|title=Nonoverlapping magisteria|journal=Natural History|volume=106|issue=2|pages=16–22|url=http://www.jbburnett.com/resources/gould_nonoverlapping.pdf|accessdate=2008-04-28|format=PDF}}</ref>
Baris 937 ⟶ 939:
<ref name=fuller1963>{{cite book|first1=R. Buckminster|last1=Fuller|authorlink=Buckminster Fuller|year=1963|title=Operating Manual for Spaceship Earth|edition=First|publisher=E.P. Dutton & Co|location=New York|isbn=0-525-47433-1|url=http://www.futurehi.net/docs/OperatingManual.html|accessdate=2007-04-21}}</ref>
 
<ref name=lovelock1979>{{cite book|first1=James E.|last1=Lovelock|authorlink1=James Lovelock|year=1979|title=Gaia: A New Look at Life on Earth|url=https://archive.org/details/gaianewlookatlif00loverich|edition=First|publisher=Oxford University Press|location=Oxford|isbn=0-19-286030-5}}</ref>
 
<ref name=mcmichael1993>For example: {{cite book|first1=Anthony J.|last1=McMichael|year=1993|title=Planetary Overload: Global Environmental Change and the Health of the Human Species|url=https://archive.org/details/planetaryoverloa00mcmi|publisher=Cambridge University Press|isbn=0-521-45759-9}}</ref>-->
 
<ref name=aj136_5_1906>{{cite journal|last1=McCarthy|first1=Dennis D.|last2=Hackman|first2=Christine|last3=Nelson|first3=Robert A.|title=The Physical Basis of the Leap Second|url=https://archive.org/details/sim_astronomical-journal_2008-11_136_5/page/1906|journal=The Astronomical Journal|volume=136|issue=5|pages=1906–1908|date=November 2008|doi=10.1088/0004-6256/136/5/1906|bibcode=2008AJ....136.1906M}}</ref>
 
<ref name=jg31_3_267>{{cite journal|last1=Pollack|first1=Henry N.|last2=Hurter|first2=Suzanne J.|last3=Johnson|first3=Jeffrey R.|title=Heat flow from the Earth's interior: Analysis of the global data set|journal=Reviews of Geophysics|volume=31|issue=3|pages=267–280|date=August 1993|doi=10.1029/93RG01249|bibcode=1993RvGeo..31..267P |url=http://www.agu.org/journals/ABS/1993/93RG01249.shtml}}</ref>
 
<ref name=lang2003>{{cite book|first1=Kenneth R.|last1=Lang|year=2003|title=The Cambridge guide to the solar system|url=https://archive.org/details/cambridgeguideto0000lang|page=[https://archive.org/details/cambridgeguideto0000lang/page/92 92]|publisher=Cambridge University Press|isbn=0-521-81306-9}}</ref>
 
<ref name=usno>{{cite web|title=Selected Astronomical Constants, 2011|work=The Astronomical Almanac|url=http://asa.usno.navy.mil/SecK/2011/Astronomical_Constants_2011.txt|accessdate=2011-02-25|archive-date=2013-08-26|archive-url=https://web.archive.org/web/20130826043456/http://asa.usno.navy.mil/SecK/2011/Astronomical_Constants_2011.txt|dead-url=yes}}</ref>
 
<ref name=christou_asher2011>{{cite arXiv | last1=Christou|first1=Apostolos A.|last2=Asher|first2=David J. | date=March 31, 2011 | title=A long-lived horseshoe companion to the Earth | eprint=1104.0036 | class=astro-ph.EP}} See table 2, p. 5.</ref>
 
<ref name=ucs>{{cite web | title=UCS Satellite Database | date=January 31, 2011 | work=Nuclear Weapons & Global Security | publisher=Union of Concerned Scientists | url=http://www.ucsusa.org/nuclear_weapons_and_global_security/space_weapons/technical_issues/ucs-satellite-database.html | accessdate=2011-05-12 }}</ref>
 
<ref name=Connors>{{cite journal |last1=Connors |first1=Martin |last2=Wiegert |first2=Paul |last3=Veillet |first3=Christian |title=Earth's Trojan asteroid |date=July 27, 2011 |journal=[[Nature (journal)|Nature]] |volume=475 |pages=481–483 |url=http://www.nature.com/nature/journal/v475/n7357/full/nature10233.html |doi=10.1038/nature10233 |accessdate=2011-07-27 |issue=7357|bibcode = 2011Natur.475..481C |pmid=21796207}}</ref>
 
<ref name=Choi>{{cite web |last1=Choi |first1=Charles Q. |title=First Asteroid Companion of Earth Discovered at Last |url=http://www.space.com/12443-earth-asteroid-companion-discovered-2010-tk7.html |date=July 27, 2011 |publisher=[[Space.com]] |accessdate=2011-07-27 }}</ref>
 
<ref name=walsh2008>{{cite book | first1=Patrick J. | last=Walsh | title=Oceans and human health: risks and remedies from the seas | page=212 | editors=Sharon L. Smith, Lora E. Fleming | publisher=Academic Press, 2008 | isbn=0-12-372584-4 | url=http://books.google.com/books?id=c6J5hlcjFaAC&pg=PA212 | date=1997-05-16 }}</ref>
 
<ref name="Turner1990">{{cite book
| first1 = B. L., II
| last1 = Turner
| title = The Earth As Transformed by Human Action: Global And Regional Changes in the Biosphere Over the Past 300 Years
| publisher = CUP Archive
| page = 164
| year = 1990
| isbn = 0521363578
| url = http://books.google.com/books?id=7GI0AAAAIAAJ&pg=PA164
| postscript= .
}}</ref>
 
<ref name="Lambina2011">{{Cite journal
| first1 = Eric F.
| last1 = Lambina
| first2 = Patrick
| last2 = Meyfroidt
| title = Global land use change, economic globalization, and the looming land scarcity
| work = Proceedings of the National Academy of Sciences of the United States of America
| publisher = National Academy of Sciences
| pages = 3465–3472
| volume = 108
| issue = 9
| date = March 1, 2011
| url = http://www.pnas.org/content/108/9/3465.full.pdf
| accessdate = 2013-04-2013
|bibcode = 2011PNAS..108.3465L
|doi = 10.1073/pnas.1100480108 }} See Table 1.</ref>
|journal =
|archive-date = 2013-09-03
|archive-url = https://web.archive.org/web/20130903005101/http://www.pnas.org/content/108/9/3465.full.pdf
|dead-url = yes
}} See Table 1.</ref>
}}
 
Baris 993 ⟶ 1.001:
-->
 
== Bacaan lanjutan ==
* {{cite book
|first=Neil F. |last=Comins
|year=2001
|title=Discovering the Essential Universe
|url=https://archive.org/details/discoveringessen0000comi|edition=2nd
|edition=2nd
|publisher=W. H. Freeman
|bibcode=2003deu..book.....C
|isbn=0-7167-5804-0}}
 
== Pranala luar ==
{{sisterlinks|EarthBumi}}
* [http://solarsystem.nasa.gov/planets/profile.cfm?Object=Earth Earth&nbsp;– Profile] {{Webarchive|url=https://web.archive.org/web/20130511235712/http://solarsystem.nasa.gov/planets/profile.cfm?Object=Earth |date=2013-05-11 }}&nbsp;– [http://solarsystem.nasa.gov/ Solar System Exploration]&nbsp;– [[NASA]].
* [http://www.ncdc.noaa.gov/oa/climate/globalextremes.html Earth&nbsp;– Temperature and Precipitation Extremes] {{Webarchive|url=https://archive.today/20120525195312/http://www.ncdc.noaa.gov/oa/climate/globalextremes.html |date=2012-05-25 }}&nbsp;– [[National Climatic Data Center|NCDC]].
* [http://www.nasa.gov/centers/goddard/earthandsun/earthshape.html Earth&nbsp;– Climate Changes Cause Shape to Change]&nbsp;– [[NASA]].
* [http://geomag.usgs.gov/ Earth&nbsp;– Geomagnetism Program]&nbsp;– [[USGS]].
* [http://eol.jsc.nasa.gov/Coll/weekly.htm Earth&nbsp;– Astronaut Photography Gateway] {{Webarchive|url=https://web.archive.org/web/20090430041323/http://eol.jsc.nasa.gov/Coll/weekly.htm |date=2009-04-30 }}&nbsp;– [[NASA]].
* [http://earthobservatory.nasa.gov/ Earth&nbsp;– Observatory]&nbsp;– [[NASA]].
* [http://www.astronomycast.com/stars/episode-51-earth/ Earth&nbsp;– Audio (29:28)&nbsp;– Cain/Gay&nbsp;– Astronomy Cast (2007)].
* Earth&nbsp;– Videos&nbsp;– [[International Space Station]]:
** [https://www.youtube.com/watch?v=74mhQyuyELQ Video (01:02)]&nbsp;– Earth (Time-Lapse).
** [https://www.youtube.com/watch?v=l6ahFFFQBZY Video (00:27)]&nbsp;– Earth and [[Aurora|Aurora]] (Time-Lapse).
 
{{Navboxes
Baris 1.024 ⟶ 1.032:
}}
{{Portal bar|Geografi|Astronomi|Tata Surya}}
 
{{Authority control}}
 
{{artikel pilihan}}
 
{{DEFAULTSORT:Bumi}}
[[Kategori:Bumi| ]]
[[Kategori:GeografiPlanet dalam zona layak huni]]
[[Kategori:Geologi]]
[[Kategori:Planet kebumian]]
[[Kategori:Planet dalam Tata Surya]]
[[Kategori:GeologiAlam]]
 
[[Kategori:Objek astronomi yang dikenal sejak zaman kuno]]
{{Link GA|de}}
{{Link GA|is}}
{{Link GA|lt}}
{{Link GA|lv}}
{{Link GA|ru}}
{{Link GA|simple}}
{{Link FA|af}}
{{Link FA|ar}}
{{Link FA|bg}}
{{Link FA|da}}
{{Link FA|en}}
{{link FA|es}}
{{Link FA|it}}
{{Link FA|mk}}
{{Link FA|nl}}
{{Link FA|pl}}
{{Link FA|sr}}
{{Link FA|vi}}
{{Link FA|kk}}
{{Link GA|ja}}
{{Link FA|es}}
{{Link FA|pt}}
{{Link FA|la}}
{{Link GA|frr}}