Kalkulus multivariabel: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Tidak ada ringkasan suntingan
 
(3 revisi perantara oleh 3 pengguna tidak ditampilkan)
Baris 1:
{{Kalkulus}}
 
'''Kalkulus multivariabelsmultivariabel''', (jugaatau dikenal'''kalkulus sebagaimultipeubah''', "Kalkulusatau multivariat";'''kalkulus variabel banyak''', atau '''kalkulus peubah banyak''' ({{lang-en|multivariate calculus}} atau ''multivariable calculus''), adalah ekstensi atau perluasan dari [[kalkulus]] dengan satu [[variabel]] menjadi kalkulus dengan lebih dari satu variabel, yaitu: [[Diferensiasi]] dan [[integral|integrasi]] fungsi-fungsi yang melibatkan banyak variabel, bukan hanya satu.
 
== Contoh operasi ==
 
=== Limit dan kontinuitas ===
Studi [[limit fungsi|limit]] dan [[fungsi kontinue|kontinuitas]] dalam kalkulus multivariabel menghasilkan banya hasil yang berlawanan dengan naluri yang tidak dihasilkan oleh fungsi-fungsi dengan variabel tunggal.<!-- Misalnya, For example, there are scalar functions of two variables with points in their domain which give a particular limit when approached along any arbitrary line, yet give a different limit when approached along a parabola. For example, the function
:<math>f(x,y) = \frac{x^2y}{x^4+y^2}</math>
Baris 70:
| [[Image:Vector field.svg|120px]] || <math>f: \mathbb{R}^m \to \mathbb{R}^n</math> || Any of the operations of [[vector calculus]] including [[gradient]], [[divergence]], and [[Curl (mathematics)|curl]].
|}
Multivariable calculus can be applied to analyze [[deterministic system]]s that have multiple [[degrees of freedom (physics and chemistry)|degrees of freedom]]. Functions with [[independent variable]]s corresponding to each of the degrees of freedom are often used to model these systems, and multivariable calculus provides tools for characterizing the [[system dynamics]].
 
Multivariable calculus is used in many fields of natural and social science and engineering to model and study high-dimensional systems that exhibit deterministic behavior. Non-deterministic, or [[stochastic process|stochastic]] systems can be studied using a different kind of mathematics, such as [[stochastic calculus]]. Quantitative analysts in finance also often use multivariate calculus to predict future trends in the stock market.
-->
== Lihat pula ==
* [[Daftar topik kalkulus multivariabel]]
* [[List of multivariable calculus topics]]
* [[MultivariateStatistika statisticsmultivariabel]]
 
== Pranala luar ==
* [http://www.youtube.com/watch?v=cw6pHhjhKmk&feature=list_related&playnext=1&list=SP07CF868151394FE3 UC Berkeley video lectures on Multivariable Calculus, Fall 2009, Professor Edward Frenkel]
* [http://www.youtube.com/user/MIT#g/c/4C4C8A7D06566F38 MIT video lectures on Multivariable Calculus, Fall 2007]
* [http://www.math.gatech.edu/~cain/notes/calculus.html ''Multivariable Calculus'']: A free online textbook by George Cain and James Herod
* [http://math.etsu.edu/Multicalc/ ''Multivariable Calculus Online'']: A free online textbook by Jeff Knisley
* [http://www.ecs.umass.edu/mie/faculty/perot/mie440/Multivariable%20Calculus.pdf ''Multivariable Calculus – A Very Quick Review''] {{Webarchive|url=https://web.archive.org/web/20120324160548/http://www.ecs.umass.edu/mie/faculty/perot/mie440/Multivariable%20Calculus.pdf |date=2012-03-24 }}, Prof Blair Perot, University of Massachusetts Amherst
 
[[CategoryKategori:Kalkulus]]