Biologi molekular: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
YurikBot (bicara | kontrib)
k robot Adding: sr
k ←Mengalihkan ke Biologi molekuler
 
(79 revisi perantara oleh 42 pengguna tidak ditampilkan)
Baris 1:
#ALIH [[Biologi molekuler]]
'''Biologi molekular''' atau '''biologi molekul''' merupakan salah satu cabang [[biologi]] yang merujuk kepada pengkajian mengenai [[kehidupan]] pada skala [[molekul]]. Ini termasuk penyelidikan tentang interaksi molekul dalam benda hidup dan kesannya, terutama tentang interaksi berbagai sistem dalam [[sel]], termasuk interaksi [[DNA]], [[RNA]], dan [[sintesis protein]], dan bagaimana interaksi tersebut diatur. Bidang ini bertumpang tindih dengan bidang [[biologi]] (dan [[kimia]]) lainnya, terutama [[genetika]] dan [[biokimia]].
 
==Keterkaitan dengan ilmu-ilmu hayati "skala-molekul" lainnya==
Para peneliti biologi molekular menggunakan teknik-teknik khusus yang khas biologi molekular (lihat subbab ''[[#Teknik-teknik biologi molekular|Teknik]]'' di bagian lain artikel ini), namun kini semakin memadukan teknik-teknik tersebut dengan teknik dan gagasan-gagasan dari [[genetika]] dan [[biokimia]]. Tidak terdapat lagi garis tegas yang memisahkan disiplin-disiplin ilmu ini seperti sebelumnya. Secara umum keterkaitan bidang-bidang tersebut dapat digambarkan sebagai berikut:
 
*''[[Biokimia]]'' merupakan telaah zat-zat kimia dan proses-proses vital yang berlangsung pada [[makhluk hidup]].
*''[[Genetika]]'' merupakan telaah atas efek perbedaan genetik pada makhluk hidup (misalnya telaah mengenai [[mutan]]).
*''Biologi molekular'' merupakan telaah dalam skala molekul atas proses [[replikasi]], [[transkripsi]], dan [[translasi]] [[bahan genetik]].
 
Semakin banyak bidang biologi lainnya yang memfokuskan diri pada [[molekul]], baik secara langsung mempelajari interaksi molekular dalam bidang mereka sendiri seperti pada [[biologi sel]] dan [[biologi perkembangan]], maupun secara tidak langsung (misalnya dengan menggunakan teknik biologi molekular untuk menyimpulkan ciri-ciri historis [[populasi]] atau [[spesies]]) seperti pada [[genetika populasi]] dan [[filogenetika]].
 
==Teknik-teknik biologi molekular==
===Kloning ekspresi===
Salah satu teknik dasar biologi molekular adalah ''[[kloning]] ekspresi'', yang digunakan misalnya untuk mempelajari fungsi [[protein]]. Pada teknik ini, potongan DNA penyandi protein yang diinginkan ditransplantasikan ke suatu plasmid (DNA sirkular yang biasanya ditemukan pada [[bakteri]]; dalam teknik ini, plasmid disebut sebagai ''vektor ekspresi'').
 
Plasmid yang telah mengandung potongan DNA yang diinginkan tersebut kemudian dapat disisipkan ke dalam sel bakteri atau sel hewan. Penyisipan DNA ke dalam sel bakteri disebut ''[[transformasi]]'', dan dapat dilakukan dengan berbagai metode, termasuk [[elektroporasi]], [[mikroinjeksi]] dan secara kimia. Penyisipan DNA ke dalam sel [[eukaryota]], misalnya sel hewan, disebut sebagai ''transfeksi'', dan teknik transfeksi yang dapat dilakukan termasuk transfeksi kalsium fosfat, transfeksi liposom, dan dengan reagen komersial. DNA dapat pula dimasukkan ke dalam sel dengan menggunakan [[virus]] (disebut ''transduksi viral'').
 
Setelah penyisipan ke dalam sel, protein yang disandi oleh potongan DNA tadi dapat diekspresikan oleh sel bersangkutan. Berbagai jenis cara dapat digunakan untuk membantu ekspresi tersebut agar protein bersangkutan didapatkan dalam jumlah besar, misalnya ''inducible promoter'' dan ''specific cell-signaling factor''. Protein dalam jumlah besar tersebut kemudian dapat diekstrak dari sel bakteri atau eukaryota tadi.
 
===''Polymerase chain reaction'' (PCR)===
'''''Polymerase chain reaction''''' ("reaksi rantai [[polimerase]]", '''PCR''') merupakan teknik yang sangat berguna dalam membuat salinan [[DNA]]. PCR memungkinkan sejumlah kecil sekuens DNA tertentu disalin (jutaan kali) untuk diperbanyak (sehingga dapat dianalisis), atau dimodifikasi secara tertentu. Sebagai contoh, PCR dapat digunakan untuk menambahkan situs enzim [[restriksi]], atau untuk me[[mutasi]]kan (mengubah) basa tertentu pada DNA.
 
PCR memanfaatkan enzim [[DNA polimerase]] yang secara alami memang berperan dalam perbanyakan DNA pada proses [[replikasi]]. Namun demikian, tidak seperti pada [[organisme]] hidup, proses PCR hanya dapat menyalin fragmen pendek DNA, biasanya sampai dengan 10 kb (kb=''kilo base pairs''=1000 [[pasang basa]]). Fragmen tersebut dapat berupa suatu [[gen]] tunggal, atau hanya bagian dari suatu gen.
 
Proses PCR untuk memperbanyak DNA melibatkan serangkaian siklus [[temperatur]] yang berulang dan masing-masing siklus terdiri atas tiga tahapan. Tahapan yang pertama adalah [[denaturasi]] cetakan DNA (''DNA template'') pada temperatur 94-96°C, yaitu pemisahan utas ganda DNA menjadi dua utas tunggal. Sesudah itu, dilakukan penurunan temperatur pada tahap kedua sampai 45-60°C yang memungkinkan terjadinya penempelan (''annealing'') atau [[hibridisasi]] antara [[oligonukleotida]] ''primer'' dengan utas tunggal cetakan DNA. ''Primer'' merupakan oligonukelotida utas tunggal yang sekuens-nya dirancang komplementer dengan ujung fragmen DNA yang ingin disalin; ''primer'' menentukan awal dan akhir daerah yang hendak disalin. Tahap yang terakhir adalah tahap ekstensi atau elongasi (''elongation''), yaitu pemanjangan ''primer'' menjadi suatu utas DNA baru oleh enzim [[DNA polimerase]]. Temperatur pada tahap ini bergantung pada jenis DNA polimerase yang digunakan. Pada akhirnya, satu siklus PCR akan menggandakan jumlah [[molekul]] cetakan DNA atau DNA target, sebab setiap utas baru yang disintesis akan berperan sebagai cetakan pada siklus selanjutnya.
 
===Elektroforesis gel===
<!--
''Artikel utama:'' [[Elektroforesis]]
-->
[[Elektroforesis]] gel merupakan salah satu teknik utama dalam biologi molekular. Prinsip dasar teknik ini adalah bahwa [[DNA]], [[RNA]], atau [[protein]] dapat dipisahkan oleh [[medan listrik]]. Dalam hal ini, molekul-molekul tersebut dipisahkan berdasarkan laju perpindahannya oleh [[gaya gerak listrik]] di dalam matriks gel. Laju perpindahan tersebut bergantung pada ukuran molekul bersangkutan. Elektroforesis gel biasanya dilakukan untuk tujuan analisis, namun dapat pula digunakan sebagai teknik preparatif untuk memurnikan molekul sebelum digunakan dalam metode-metode lain seperti [[spektrometri massa]], [[#Polymerase chain reaction (PCR)|PCR]], [[kloning]], [[sekuensing]] DNA, atau ''immuno-blotting'' yang merupakan metode-metode karakterisasi lebih lanjut.
 
Gel yang digunakan biasanya merupakan [[polimer]] bertautan silang (''crosslinked'') yang porositasnya dapat diatur sesuai dengan kebutuhan. Untuk memisahkan [[protein]] atau [[asam nukleat]] berukuran kecil ([[DNA]], [[RNA]], atau [[oligonukleotida]]), gel yang digunakan biasanya merupakan gel [[poliakrilamida]], dibuat dengan konsentrasi berbeda-beda antara [[akrilamida]] dan zat yang memungkinkan pertautan silang (''cross-linker''), menghasilkan jaringan poliakrilamida dengan ukuran rongga berbeda-beda. Untuk memisahkan asam nukleat yang lebih besar (lebih besar dari beberapa ratus [[basa]]), gel yang digunakan adalah [[agarosa]] (dari ekstrak [[rumput laut]]) yang sudah dimurnikan.
 
Dalam proses elektroforesis, sampel molekul ditempatkan ke dalam "sumur" (''well'') pada gel yang ditempatkan di dalam [[larutan penyangga]], dan [[listrik]] dialirkan kepadanya. Molekul-molekul sampel tersebut akan bergerak di dalam matriks gel ke arah salah satu [[kutub listrik]] sesuai dengan [[muatan listrik|muatan]]nya. Dalam hal asam nukleat, arah pergerakan adalah menuju [[elektroda]] positif, disebabkan oleh muatan negatif alami pada rangka [[gula]]-[[fosfat]] yang dimilikinya. Untuk menjaga agar laju perpindahan asam nukleat benar-benar hanya berdasarkan ukuran (yaitu panjangnya), zat seperti [[natrium hidroksida]] atau [[formamida]] digunakan untuk menjaga agar asam nukleat berbentuk lurus. Sementara itu, protein didenaturasi dengan [[deterjen]] (misalnya natrium dodesil sulfat, SDS) untuk membuat protein tersebut berbentuk lurus dan bermuatan negatif.
 
Setelah proses elektroforesis selesai, dilakukan proses pewarnaan (''staining'') agar molekul sampel yang telah terpisah dapat dilihat. Etidium bromida, [[perak]], atau pewarna "biru Kumasi" (''Coomassie blue'') dapat digunakan untuk keperluan ini. Jika molekul sampel berpendar dalam sinar [[ultraviolet]] (misalnya setelah "diwarnai" dengan etidium bromida), gel di[[foto]] di bawah sinar ultraviolet. Jika molekul sampel mengandung atom [[radioaktivitas|radioaktif]], [[autoradiogram]] gel tersebut dibuat.
 
<!--
===''Blotting''===
The [[northern_blot|Northern Blot]] is used to study the expression patterns a specific type of RNA molecule as relative comparison among of a set of different samples of RNA. It is essentially a combination of denaturing RNA Gel electrophoresis, and a blot. In this process RNA is separated based on size and is then transfered to a membrane that is then probed with the a labeled complement of a sequence of interest. The results may be visualized through a variety of ways depending on the label used, however, most result in the revelation of bands representing the sized of the RNA detected in sample. The intensity of these bands is related to the amount of the target RNA in the samples analyzed. The procedure is commonly used to study when and how much gene expressing is occurring by measuring how much of that RNA is present in different samples. It is one of the most basic tools for determing at what time certain genes are expressed in living tissues.
 
Antibodies to most proteins can be created by injecting small amounts of the protein into an animal such as a mouse, rabbit, sheep, or donkey. These antibodies can be used for a variety of analytical and preprative techniques.
 
In [[Western blot]]ting, proteins are first separated by size, in a thin gel sandwiched between two glass plates. This technique is called SDS-PAGE (for Sodium Dodecyl Sulfate Poly-Acrylamide Gel Electrophoresis). The proteins in the gel are then transferred to a PVDF, nitrocellulose, nylon or other support membrane. This membrane can then be probed with solutions of antibodies. Antibodies that specifically bind to the protein of interest can then be visualized by a variety of techniques, including chemoluminescence or radioactivity.
 
Antibodies can also be used to purify proteins. Antibodies to a protein are generated and are often then coupled to "beads". After the antibody has bound to the protein of interest, this antibody-protein complex can be separated from all other proteins by centrifugation. During centrifugation, the beads, to which the antibody is coupled, will pellet (bringing the protein of interest down with it) whereas all other proteins will remain in the solution. Alternatively, antibodies coupled to a solid support matrix like Sephadex or Sepharose beads, for example, can be used to remove a protein of interest from a complex solution. After washing unbound and non-specifically bound materials away from the "beads", the protein of interest is then eluted from the matrix, usually by adding a solution with a high salt concentration, or by varying the pH of the solution in which the matrix is contained. The beads can either be suspended in solution (batch processing) or packed into a tube (column processing).-->
 
[[Kategori:Biologi molekular]]
 
[[cs:Molekulární biologie]]
[[de:Molekularbiologie]]
[[el:Μοριακή Βιολογία]]
[[en:Molecular biology]]
[[eo:Molekulara Biologio]]
[[es:Biología molecular]]
[[et:Molekulaarbioloogia]]
[[fr:Biologie moléculaire]]
[[fy:Molekulêre biology]]
[[he:ביולוגיה מולקולרית]]
[[hr:Molekularna biologija]]
[[hu:Molekuláris biológia]]
[[ja:分子生物学]]
[[ko:분자생물학]]
[[lb:Molekularbiologie]]
[[ms:Biologi skala molekul]]
[[nl:Moleculaire biologie]]
[[pl:Biologia molekularna]]
[[ru:Молекулярная биология]]
[[sr:Молекуларна биологија]]
[[sv:Molekylärbiologi]]
[[th:อณูชีววิทยา]]
[[vi:Sinh học phân tử]]
[[zh:分子生物学]]