Besi: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Wagino Bot (bicara | kontrib) k minor cosmetic change |
Wagino Bot (bicara | kontrib) k minor cosmetic change |
||
Baris 57:
|}
Sifat mekanik besi dan paduannya dapat dievaluasi menggunakan berbagai uji, termasuk [[Timbangan Brinell|uji Brinell]], [[Timbangan Rockwell|uji Rockwell]] dan [[uji kekerasan Vickers]]. Data pada besi begitu konsisten sehingga sering digunakan untuk kalibrasi peralatan atau uji perbandingan.<ref name=corr/><ref>{{cite web| url=http://mdmetric.com/tech/hardnessconversion.html| title=Hardness Conversion Chart|accessdate=23 May 2010|publisher=Maryland Metrics}}</ref> Namun, sifat mekanik besi sangat dipengaruhi oleh kemurnian sampel: besi murni kristal tunggal untuk keperluan penenelitian faktanya lebih lunak daripada aluminium,<ref name=pure/> dan besi hasil produksi industri yang paling murni (99,99%) memiliki kekerasan 20–30 Brinell.<ref>{{Cite journal| title=Properties of Various Pure Irons: Study on pure iron I| url=http://ci.nii.ac.jp/naid/110001459778/en| volume=50| issue=1| pages=42–47| journal=Tetsu-to-Hagane| first1 = Kusakawa|last1 = Takaji|first2 = Otani|last2 =Toshikatsu| date=1964}}</ref> Kenaikan kandungan karbon dalam besi akan menyebabkan kenaikan yang signifikan pada kekerasan dan kekuatan tarik. Kekerasan maksimum [[Timbangan Rockwell|65 R<sub>c</sub>]] dicapai dengan kadar karbon 0.6%, meskipun prosedur ini untuk logam dengan daya tarik rendah<ref>{{Cite book|url=https://books.google.com/?id=LgB5dkmPML0C&pg=PA218|page=218|title=Materials Science and Engineering|first=V.|last= Raghavan|publisher =PHI Learning Pvt. Ltd.|isbn=81-203-2455-2
[[File:Iron-alpha-pV.svg|thumb|240px|Volume molar vs tekanan untu besi-α pada temperatur kamar]]
Karena signifikansinya untuk inti planet, sifat fisik besi pada tekanan dan suhu tinggi juga telah dipelajari secara mendalam. Bentuk besi yang stabil di bawah kondisi standar dapat mengalami tekanan hingga 15 GPa sebelum berubah menjadi bentuk tekanan tinggi, seperti yang dijelaskan pada bagian selanjutnya.
Baris 149:
|}
Besi membentuk senyawa utamanya dalam [[Bilangan oksidasi|tingkat oksidasi]] +2 dan +3. Menurut tradisi, senyawa besi(II) disebut [[Fero (besi)|fero]] dan senyawa besi(III) disebut [[Feri (besi)|feri]]. Besi juga dapat memiliki tingkat oksidasi yang lebih tinggi, contohnya adalah [[kalium ferat]] (K<sub>2</sub>FeO<sub>4</sub>), berwarna ungu, yang mengandung besi dengan bilangan oksidasi +6. Besi(IV) adalah bentuk antara yang umum dalam banyak reaksi oksidasi biokimia.<ref>{{Cite journal| doi = 10.1021/ar700027f|title = High-Valent Iron(IV)–Oxo Complexes of Heme and Non-Heme Ligands in Oxygenation Reactions|date = 2007|last1 = Nam|first1 = Wonwoo|journal = Accounts of Chemical Research|volume = 40|pages = 522–531|pmid = 17469792|issue = 7}}</ref><ref name="HollemanAF">{{Cite book|publisher = Walter de Gruyter|date = 1985|edition = 91–100|pages = 1125–1146|isbn = 3-11-007511-3|title = Lehrbuch der Anorganischen Chemie|first1 = Arnold F.|last1 = Holleman|last2 = Wiberg|first2 = Egon|last3 = Wiberg|first3 = Nils|chapter = Iron|language = German}}</ref> Sejumlah senyawa organologam mengandung tingkat oksidasi formal +1, 0, −1, atau bahkan −2. Tingkat oksidasi dan sifat ikatan lainnya sering diuji menggunakan teknik spektroskopi Mössbauer.<ref>{{Cite book|chapter = Mössbauer Spectroscopy and the Coordination Chemistry of Iron|first1 = William Michael|last1 = Reiff|first2 = Gary J.|last2 = Long
[[File:Iron(III) chloride hexahydrate.jpg|thumb|alt=Some canary-yellow powder sits, mostly in lumps, on a laboratory watch glass.|[[Besi(III) klorida]] hidrat, dikenal juga sebagai feri klorida]]
Baris 185:
Produksi besi pertama dimulai sejak [[Zaman Perunggu|Zaman Perunggu tengah]] tetapi memerlukan beberapa abad sebelum dapat menggantikan perunggu. Contoh [[Peleburan (metalurgi)|leburan]] besi dari [[Asmar (Mesopotamia)|Asmar]], Mesopotamia dan Tall Chagar Bazaar di Siria bagian utara dibuat antara 2.700 dan 3.000 SM.{{sfn|Weeks|1968|p=32}} [[Hittites]] nampaknya adalah yang pertama memahami produksi besi dari bijihnya dan sangat dihormati dalam masyarakat mereka. Mereka mulai melebur besi antara 1.500 dan 1.200 SM dan praktik ini tersebar ke Timur Dekat setelah kekaisaran mereka runtuk pada tahun 1.180 SM.{{sfn|Weeks|1968|p=32}} Periode berikutnya disebut [[Zaman Besi]]. Peleburan besi, oleh karenanya dinamakan Zaman Besi, mencapai Eropa dua ratus tahun kemudian dan tiba di [[Zimbabwe]], Afrika pada abad ke-8.{{sfn|Weeks|1968|p=32}} Di China, besi hanya muncul sekitar tahun 700-500 SM.<ref>Sawyer, Ralph D. and Mei-chün Sawyer. ''The Seven Military Classics of Ancient China.'' Boulder: Westview, (1993), p. 10.</ref> Peleburan besi telah diperkenalkan kepada China melalui Asia Tengah.<ref name="pigott2">Pigott, Vincent C. (1999). p. 8.</ref> Bukti awal penggunaan [[tanur tinggi]] di China berpenanggalan abad pertama setelah masehi,<ref name="Golas1999">{{cite book|author=Peter J. Golas|title=Science and Civilisation in China: Volume 5, Chemistry and Chemical Technology, Part 13, Mining|url=https://books.google.com/books?id=TSiII7s2wLkC&pg=PA152|date=25 February 1999|publisher=Cambridge University Press|isbn=978-0-521-58000-7|page=152|quote=earlist blast furnace discovered in China from about the first century AD}}</ref> dan tungku kubah ({{Lang-en|cupola furnaces}}) digunakan pada awal periode perang (403–221 BCE).<ref name="pigott">Pigott, Vincent C. (1999). ''The Archaeometallurgy of the Asian Old World''. Philadelphia: University of Pennsylvania Museum of Archaeology and Anthropology. ISBN 0-924171-34-0, p. 191.</ref> Penggunaan tanur tinggi dan kubah tetap menyebar selama [[Dinasti Song]] dan [[Dinasti Tang|Tang]].<ref name="The Coming of the Ages of Steel">{{cite book|title=The Coming of the Ages of Steel|url=https://books.google.com/books?id=uMwUAAAAIAAJ&pg=PA54|publisher=Brill Archive|page=54|id=GGKEY:DN6SZTCNQ3G|date=1961}}</ref>
Artifak besi lebur ditemukan di [[Sejarah metalurgi di sub benua India|India]] berpenanggalan antara 1.800 hingga 1.200 SM,<ref name=Tewari>{{cite web| url = http://antiquity.ac.uk/projgall/tewari/tewari.pdf|first = Rakesh|last = Tewari|title = The origins of Iron Working in India: New evidence from the Central Ganga plain and the Eastern Vindhyas|publisher = State Archaeological Department|accessdate = 23 May 2010}}</ref> dan di [[Levant]] sejak sekitar 1.500 SM (menunjukkan peleburan di [[Anatolia]] atau [[Kaukasus]]).<ref>{{Cite journal|doi=10.1080/00438243.1989.9980081|last=Photos|first = E.|title=The Question of Meteoritic versus Smelted Nickel-Rich Iron: Archaeological Evidence and Experimental Results|journal=World Archaeology |volume=20 |issue=3 |date=1989 |pages=403–421|publisher=Taylor & Francis, Ltd.|jstor = 124562}}</ref><ref>{{Cite book|last = Muhly|first = James D.|chapter = Metalworking/Mining in the Levant|pages = 174–183|title =Near Eastern Archaeology IN: Eisenbrauns
Pengolahan besi masuk ke [[Yunani]] di akhir abad ke-11 SM.<ref>Riederer, Josef; Wartke, Ralf-B.: "Iron", Cancik, Hubert; Schneider, Helmuth (eds.): [[Brill's New Pauly]], Brill 2009</ref> Penyebaran pengolahan besi di Eropa Tengah dan Barat dihubungkan dengan ekspansi kaum [[Kelt]]. Menurut [[Gaius Plinius Secundus]] (''Pliny the Elder'') penggunaan besi adalah jamak pada era [[Romawi Kuno|Romawi]].{{sfn|Weeks|1968|p=31}} Produksi besi tahunan [[Kekaisaran Romawi]] diperkirakan 84.750 [[ton]],<ref>Craddock, Paul T. (2008): "Mining and Metallurgy", in: [[John Peter Oleson|Oleson, John Peter]] (ed.): ''The Oxford Handbook of Engineering and Technology in the Classical World'', Oxford University Press, ISBN 978-0-19-518731-1, p. 108</ref> sementara China Han yang padat penduduk memproduksi sekitar 5.000 [[ton]].<ref>Wagner, Donald B.: "The State and the Iron Industry in Han China", NIAS Publishing, Copenhagen 2001, ISBN 87-87062-77-1, p. 73</ref>
Baris 204:
Baja (dengan kandungan karbon yang lebih kecil daripada besi kasar tetapi lebih banyak daripada besi tempa) pertama kali diproduksi menggunakan [[bloomery]]. Pandai besi di [[Luristan]], Iran bagian barat membuat baja yang bagus pada 1.000 SM.{{sfn|Weeks|1968|p=32}} Kemudian, versi pengembagannya adalah, [[baja Wootz]] oleh India dan [[baja Damaskus]] dikembangkan sekitar 300 SM dan 500 setelah masehi. Metode ini adalah spesialisasi, dan oleh karenanya baja tiak menjadi komoditas utama hingga tahun 1850an.<ref>Spoerl, Joseph S. [http://www.anselm.edu/homepage/dbanach/h-carnegie-steel.htm A Brief History of Iron and Steel Production]. Saint Anselm College</ref>
Metode produksi baru adalah melalui [[karburasi]] besi batangan dalam [[proses sementasi]] ditemukan pada abad ke-17. Pada Revolusi Industri, metode baru memproduksi besi batangan tanpa batu bara ditemukan dan hal ini kemudian digunakan untuk memproduksi baja. Pada akhir 1850an, [[Henry Bessemer]] menciptakan proses pembuatan baja baru, melibatkan penghembusan udara melalui lelehan besi kasar untuk memproduksi baja lunak. Hal ini membuat baja jauh lebih ekonomis, oleh karena itu besi tempa tidak lagi diproduksi.<ref>{{cite book
===Dasar kimia modern===
Baris 300:
Besi adalah logam yang paling banyak digunakan, mencakup 92% dari produksi logam dunia.<ref group="n">Data UGSG menyatakan produksi besi termsuk daur ulang adalah 998Mt, aluminium (39Mt), tembaga (18Mt), seng (11Mt) dan timbal (8,6Mt)</ref> <!-- The UGSG gives a production of iron including recycling with 998Mt, while aluminium (39Mt), copper (18Mt), zinc (11Mt) and lead (8.6Mt) add up to 77 Mt, all including recycling. This more like 8% than 5.-->Biayanya yang rendah dan kekuatannya yang tinggi membuatnya sangat diperlukan dalam aplikasi teknik seperti pembangunan mesin dan [[peralatan mesin]], [[mobil]], [[Lambung kapal|lambung]] [[Kapal|kapal-kapal]] besar, dan komponen struktur [[bangunan]]. Karena besi murni cukup lunak, hal ini paling sering dikombinasikan dengan unsur paduan untuk membuat baja.
Besi yang tersedia untuk komersial diklasifikasikan berdasarkan kemurnian dan kandungan aditifnya. [[Besi kasar|''Pig iron'']] memiliki 3,5-4,5% karbon<ref name="msts">{{Cite book|last1 = Camp|first1 = James McIntyre|last2 = Francis
Besi tuang "putih" mengandung karbon dalam bentuk [[sementit]], atau besi-karbida. Senyawa keras dan rapuh ini mendominasi sifat mekanik besi tuang putih ini, sehingga tetap keras, tapi tidak tahan kejut. Permukaan besi tuang putih yang rusak penuh goresan halus pecahan besi-karbida, suat bahan mengkilap, keperakan dan sangat pucat.
Baris 316:
===Senyawa besi===
Meskipun peran metalurgi dominan dalam hal jumlah, senyawa besi banyak digunakan oleh baik industri maupun kegunaan lainnya. Katalis besi secara tradisional digunakan dalam [[proses Haber-Bosch]] untuk produksi amonia dan [[proses Fischer-Tropsch]] untuk konversi karbon monoksida menjadi [[hidrokarbon]] untuk bahan bakar dan pelumas.<ref>{{Cite book|title = Surface science: foundations of catalysis and nanoscience|first = Kurt W.|last = Kolasinski|isbn = 978-0-471-49244-3|publisher =John Wiley and Sons|date = 2002|url = https://books.google.com/?id=OA7L1l6oHAYC&pg=PR15|chapter = Where are Heterogenous Reactions Important|pages = 15–16}}</ref> Serbuk besi dalam pelarut asam digunakan dalam [[reduksi Bechamp]] yaitu reduksi [[nitrobenzena]] menjadi [[anilin]].<ref>{{Cite book|url = https://books.google.com/?id=BiywGdlot9kC&pg=PA167|chapter = Nitrobenzene and Nitrotoluene
[[Besi(III) klorida]] digunakan untuk pemurnian air dan [[pengolahan limbah]], untuk mewarnai tekstil, sebagai pewarna cat, sebagai aditif pakan ternak, dan sebagai [[:en:Industrial etching|''etchant'']] untuk [[tembaga]] dalam pabrikasi [[Papan sirkuit cetak|PCB]].<ref>{{Cite journal| doi = 10.1002/14356007.a14_591| title = Ullmann's Encyclopedia of Industrial Chemistry| date = 2000| last1 = Wildermuth| first1 = Egon| last2 = Stark| first2 = Hans| last3 = Friedrich| first3 = Gabriele| last4 = Ebenhöch| first4 = Franz Ludwig| last5 = Kühborth| first5 = Brigitte| last6 = Silver| first6 = Jack| last7 = Rituper| first7 = Rafael| chapter = Iron Compounds| isbn = 3527306730}}</ref> Ini bisa juga dilarutkan dalam alkohol untuk membuat besi ''tincture''. Halida lainnya cenderung memiliki penggunaan yang terbatas di laboratorium.
Baris 365:
Besi memang melimpah, tetapi sumber zat besi utama antara lain [[daging merah]], [[kacang-kacangan]], [[kacang]], [[daging unggas]], [[ikan]], [[sayuran hijau]], [[selada air]], [[tahu]], [[buncis]], [[kacang polong]], [[roti]] yang difortifikasi, dan [[sereal]] yang difortifikasi. Besi dalam jumlah kecil ditemukan dalam [[molases]], ''[[teff]]'', dan [[tepung kentang]] (farina). Besi dalam daging (besi [[heme]]) lebih mudah diserap daripada besi dalam sayuran.<ref>[http://www.eatwell.gov.uk/healthissues/irondeficiency/ Food Standards Agency – Eat well, be well – Iron deficiency]. Eatwell.gov.uk (5 March 2012). Retrieved on 27 June 2012.</ref> Meskipun sejumlah studi menyebutkan bahwa heme/hemoglobin dari daging merah mempunyai efek yang dapat meningkatkan kemungkinan [[kanker usus besar]],<ref name="pmid10582688">{{Cite journal|title=Red meat and colon cancer: the cytotoxic and hyperproliferative effects of dietary heme |journal=Cancer Research|volume=59 |issue=22 |date=1999 |pmid=10582688 |last=Sesink |first= Aloys L. A. |author2=T |author3=K |author4=V|pages=5704–9}}</ref><ref name="pmid16226281">{{Cite journal|title=Hemoglobin and hemin induce DNA damage in human colon tumor cells HT29 clone 19A and in primary human colonocytes |journal=[[Mutat. Res.]] |volume=594 |issue=1–2 |pages=162–171 |date=2006 |pmid=16226281 |doi=10.1016/j.mrfmmm.2005.08.006 |last1=Glei |first1=M. |last2=Klenow |first2=S. |last3=Sauer |first3=J. |last4=Wegewitz |first4=U. |last5=Richter |first5=K. |last6=Pool-Zobel |first6=B. L.}}</ref> tetapi tetap ada sejumlah kontroversi,<ref>{{Cite journal|url=http://cebp.aacrjournals.org/content/10/5/439.full|title=Systematic Review of the Prospective Cohort Studies on Meat Consumption and Colorectal Cancer Risk: A Meta-Analytical Approach |journal=Cancer Epidemiology, Biomarkers & Prevention |date=2001 |volume=10 |pmid=11352852 |issue=5|last1=Sandhu|first1=M. S.|last2=White|first2=I. R.|last3=McPherson|first3=K.|pages=439–46}}</ref> dan bahkan ada beberapa studi yang menyatakan bahwa tidak ada bukti cukup yang mendukung klaim semacam itu.<ref>{{cite web| url = http://www.sciencedaily.com/releases/2007/06/070611113729.htm|title = Eating Red Meat Will Not Increase Colorectal Cancer Risk, Study Suggests|publisher = ScienceDaily|date = 13 June 2007| accessdate = 23 May 2010}}</ref>
Besi yang ada dalam [[suplemen makanan]] seringkali ditemukan sebagai [[besi(II) fumarat]], meskipun besi sulfat lebih murah dan dapat diserap cukup baik. Unsur besi, meski efisiensi penyerapannya hanya {{frac|3}} relatif dari besi sulfat,<ref>{{cite journal|last1=Hoppe|first1=M.|last2=Hulthén|first2=L.|last3=Hallberg|first3=L.|title=The relative bioavailability in humans of elemental iron powders for use in food fortification|journal=European Journal of Nutrition|volume=45|issue=1|pages=37–44|date=2005|pmid=15864409|doi=10.1007/s00394-005-0560-0}}</ref> sering ditambahkan dalam makanan seperti sereal dan tepung terigu. Besi yang paling mudah diserap tubuh apabila [[Pembentukan khelat|di-khelat-kan]] dengan asam amino<ref name="pmid11377130">{{Cite journal|title=Effectiveness of treatment of iron-deficiency anemia in infants and young children with ferrous bis-glycinate chelate |journal=Nutrition |volume=17 |issue=5 |pages=381–4 |date=2001 |pmid=11377130| doi = 10.1016/S0899-9007(01)00519-6 |last1=Pineda |first1=O. |last2=Ashmead |first2=H. D.}}</ref> dan juga tersedia sebagai [[suplemen besi]]. Seringkali asam amino yang dipilih adalah yang termurah dan paling umum yaitu [[glisin]], dalam bentuk suplemen "besi glisinat".<ref name="Ashmead">{{Cite book|last = Ashmead
===Penyerapan dan penyimpanan===
Baris 386:
Bakteri pemakan besi hidup di lambung [[kapal karam]] seperti ''[[Titanic]]''.<ref>{{cite book
}}</ref> Bakteti asidofil ''[[Acidithiobacillus|Acidithiobacillus ferrooxidans]]'', ''[[Leptospirillum ferrooxidans]]'', ''[[Sulfolobus]]'' spp., ''[[Acidianus|Acidianus brierleyi]]'' and ''[[Sulfobacillus thermosulfidooxidans]]'' dapat mengoksidasi enzimatis besi fero.<ref>{{cite journal|url=http://mic.sgmjournals.org/content/156/3/609.full|title=Metals, minerals and microbes: geomicrobiology and bioremediation|journal=Microbiology|author=Geoffrey Michael Gadd|volume=156|date=March 2010|pages=609–643|doi=10.1099/mic.0.037143-0|pmid=20019082|issue=3}}</ref> Sample jamur ''[[Aspergillus niger]]'' ditemukan tumbuh dari larutan penambangan emas, dan ditemukan mengandung kompleks sianologam seperti emas, perak, tembaga, besi dan seng. Jamur juga berperan dalam kemudahlarutan sulfida logam berat.<ref>{{cite book|url=https://books.google.com/books?id=WY3YvfNoouMC&pg=PA533&cad=4#v=onepage&q&f=false|title=Mycoremediation: Fungal Bioremediation|author=Harbhajan Singh|page=509}}</ref>
===Hambatan permeabel reaktif===
[[Besi zerovalen]] adalah materi reaktif utama pada [[hambatan permeabel reaktif]].<ref>{{cite book
==Toksisitas==
|