Uji kekonvergenan: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
HsfBot (bicara | kontrib)
k Bot: Perubahan kosmetika
k Bot: Perubahan kosmetika
Baris 57:
 
Maka <math>\sum a_nb_n </math> juga konvergen.
 
=== [[:en:Alternative series test|Tes deret berseling]] ===
 
<!--This is also known as the Leibniz criterion. If <math>\sum_{n=1}^\infty a_n</math> is a series whose terms alternative from positive to negative, and if the limit as n approaches infinity of <math> a_n </math> is zero and the absolute value of each term is less than the absolute value of the previous term, then <math>\sum_{n=1}^\infty a_n</math> is konvergen.
-->
=== [[Dirichlet test|Tes Dirichlet]] ===
 
=== [[Tes Raabe-Duhamel]] ===
Baris 129 ⟶ 123:
* [http://www.math.tamu.edu/~austin/serieschart.pdf Flowchart for choosing convergence test]
 
[[Kategori:Matematika]]
[[Kategori:Tes konvergensi| ]]
[[Kategori:Matematika]]