Etana: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
k Bot: Perubahan kosmetika
Taylor 49 (bicara | kontrib)
kesalahan "sub"
Baris 1:
<!-- Here is a table of data; skip past it to edit the text. -->
{{Chembox
| Name = Etana
Baris 8 ⟶ 7:
| ImageFile2 = Ethane-3D-vdW.png
| ImageSize2 = 150px
| IUPACName = Etana<ref name=iupac2013>{{cite book | title = Nomenclature of Organic Chemistry : IUPAC Recommendations and Preferred Names 2013 (Blue Book) | publisher = [[Royal Society of Chemistry|The Royal Society of Chemistry]] | date = 2014 | location = Cambridge | page = 4 | doi = 10.1039/9781849733069-FP001 | isbn = 978-0-85404-182-4 | quote = Seperti lainnya, nama ‘etana’, ‘propana’, dan ‘butana’ tidak pernah digantikan dengan nama sistematis ‘dikarban’, ‘trikarban’, dan ‘tetrakarban’ seperti disarankan untuk analogi dengan silan, ‘disilan’; fosfan, ‘trifosfane’; dan sulfan, ‘tetrasulfan’.}}</ref>
| SystematicName = Dikarban (tidak disarankan<ref name=iupac2013 />)
| OtherNames = dimetil; etil hidrida; metilmetana
Baris 93 ⟶ 92:
 
: [[asetat|{{chem2|CH|3|COO|−}}]] → •{{chem2|CH|3}}+ [[karbon dioksida|{{chem2|CO|2}}]] + [[elektron|e<sup>−</sup>]]
: {{chem2|H|3|C}}• + •{{chem2|CH|3}} → {{chem2|C|2|H|6}}</sub>
 
Metode lain yang secara konseptual mirip adalah dengan oksidasi [[anhidrida asetat]] menggunakan [[peroksida]].
Baris 137 ⟶ 136:
=== Barier etana ===
 
[[Image:Lilpscomb-ethane-barrier.png|jmpl|kiri|Barier etana terhadap rotasi ikatan karbon-karbon. Grafik adalah energi potensial sebagai fungsi sudut putaran.]]
Grafik adalah energi potensial sebagai fungsi sudut putaran.]]
 
Memutar substruktur molekuler di sekitar ikatan yang mudah pecah umumnya membutuhkan energi. Energi minimum untuk menghasilkan rotasi ikatan 360 derajat disebut [[Stereokimia alkana|penghalang rotasi]] ({{lang-en|rotational barrier}}).
 
Etana memberikan contoh klasik dan sederhana tentang penghalang rotasi semacam itu, yang terkadang disebut "penghalang etana". Di antara bukti eksperimental awal penghalang ini (lihat diagram di sebelah kiri) diperoleh dengan memodelkan entropi etana.<ref>{{cite journal |doi= 10.1021/ja01281a014 |title= The Entropy of Ethane and the Third Law of Thermodynamics. Hindered Rotation of Methyl Groups |journal= Journal of the American Chemical Society |volume=59 |issue=2 |pages=276 |year=1937 |last1=Kemp |first1=J. D. |last2=Pitzer |first2= Kenneth S.}}
</ref> Tiga hidrogen di setiap ujung bebas untuk berputar di sekitar ikatan pusat karbon-karbon bila diberi energi yang cukup untuk mengatasi penghalang. Asal usul fisik penghalang masih belum sepenuhnya terpecahkan,<ref>{{cite journal |doi= 10.1021/ed082p1703 |title= Determination of the Rotational Barrier in Ethane by Vibrational Spectroscopy and Statistical Thermodynamics |year=2005 |last= Ercolani |first1=G. |journal= J. Chem. Educ. |volume=82 |issue=11 |pages= 1703–1708 |bibcode = 2005JChEd..82.1703E }}</ref> meskipun tolakan tumpang tindih (pertukaran)<ref>{{cite journal |doi= 10.1021/ar00090a004 |title= The Barrier to Internal Rotation in Ethane |year=1983 |last= Pitzer |first1= R.M. |journal= Acc. Chem. Res. |volume=16 |issue=6 |pages= 207–210}}</ref> antar atom hidrogen pada ujung molekul yang berlawanan mungkin adalah kandidat terkuat untuk fenomena tersebut, dengan memberikan efek [[hiperkonjugasi]] yang menstabilkan pada konformasi steger.<ref>{{cite journal|doi=10.1002/anie.200352931|title=The Magnitude of Hyperconjugation in Ethane: A Perspective from Ab Initio Valence Bond Theory|year=2004|last1=Mo|first1=Y.|last2=Wu|first2=W.|last3=Song|first3=L.|last4=Lin|first4=M.|last5=Zhang|first5=Q.|last6=Gao|first6=J.|journal=Angew. Chem. Int. Ed.|volume=43|issue=15|pages=1986–1990}}</ref> Namun, metode teoretis yang menggunakan titik awal yang tepat (orbital ortogonal) menemukan bahwa hiperkonjugasi adalah faktor yang terpenting terkait asal penghalang rotasi etana.<ref>{{cite journal |author= Pophristic, V.; Goodman, L. |title= Hyperconjugation not steric repulsion leads to the staggered structure of ethane |journal= Nature |volume= 411 |issue= 6837 |pages= 565–8 |doi= 10.1038/35079036 |pmid= 11385566 |year=2001}}</ref><ref>{{cite journal |author= Schreiner, P. R. |title= Teaching the right reasons: Lessons from the mistaken origin of the rotational barrier in ethane |journal= Angewandte Chemie International Edition |volume=41 |issue=19 |pages=3579–81, 3513 |pmid= 12370897 |year= 2002 |doi= 10.1002/1521-3773(20021004)41:19<3579::AID-ANIE3579>3.0.CO;2-S}}</ref>
</ref>
 
Selama tahun 1890-1891, kimiawan memperkirakan bahwa molekul etana lebih menyukai konformasi steger dengan dua ujung molekul saling miring satu sama lain.<ref>{{cite journal |author= Bischoff, CA |title= Ueber die Aufhebung der freien Drehbarkeit von einfach verbundenen Kohlenstoffatomen |year=1890 |journal= Chem. Ber. |volume=23 |page= 623 |doi= 10.1002/cber.18900230197}}</ref><ref>{{cite journal |author= Bischoff, CA |title= Theoretische Ergebnisse der Studien in der Bernsteinsäuregruppe |year= 1891 |journal= Chem. Ber. |volume=24 |pages= 1074 |doi= 10.1002/cber.189102401195}}</ref><ref>{{cite journal |author= Bischoff, CA |title= Die dynamische Hypothese in ihrer Anwendung auf die Bernsteinsäuregruppe |year= 1891 |journal= Chem. Ber. |volume=24 |pages=1085 |doi= 10.1002/cber.189102401196 }}</ref><ref>{{cite journal |year=1893 |volume=26 |issue=2 |page= 1452 |doi= 10.1002/cber.18930260254 |title= Die Anwendung der dynamischen Hypothese auf Ketonsäurederivate |journal= Berichte der deutschen chemischen Gesellschaft |last1= Bischoff |first1=C.A. |last2= Walden |first2= P.}}</ref>
Baris 157 ⟶ 154:
 
== Kegunaan ==
 
Kegunaan utama etana adalah sebagai bahan baku untuk produksi [[Etena|etena (etilena)]] (C<sub>2</sub>H<sub>4</sub>) melalui [[perengkahan kukus]] (''[[:en:Steam cracking|steam cracking]]''). Bila diencerkan dengan kukus dan dipanaskan sebentar hingga suhu yang sangat tinggi (900&nbsp;°C atau lebih), hidrokarbon berat terurai menjadi hidrokarbon yang lebih ringan, dan [[hidrokarbon jenuh]] menjadi [[Hidrokarbon tak jenuh|tidak jenuh]]. Etana merupakan bahan yang baik dalam produksi etilena karena hasil reaksi perengkahan kukus etana menghasilkan persentase etilena yang cukup banyak, sedangkan reaksi hidrokarbon lain yang lebih berat menghasilkan produk berupa campuran yang memiliki sedikit etilena, dan lebih banyak mengandung alkena yang lebih berat ([[Alkena|olefin]]) seperti [[Propena|propena (propilena)]] dan [[butadiena]], serta [[hidrokarbon aromatik]].