Getaran: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Tidak ada ringkasan suntingan
LaninBot (bicara | kontrib)
k namun (di tengah kalimat) → tetapi
Baris 51:
</math>
 
Catatan: [[frekuensi sudut]] <math>\omega</math> (<math>\omega=2 \pi f</math>) dengan satuan radian per detik kerap kali digunakan dalam persamaan karena menyederhanakan persamaan, namuntetapi besaran ini biasanya diubah ke dalam frekuensi "standar" (satuan [[Hertz|Hz]]) ketika menyatakan frekuensi sistem.
 
Bila massa dan kekakuan (tetapan ''k'') diketahui frekuensi getaran sistem akan dapat ditentukan menggunakan rumus di atas.
Baris 70:
:<math>m \ddot{x} + { c } \dot{x} + {k } x = 0.</math>
 
Solusi persamaan ini tergantung pada besarnya redaman. Bila redaman cukup kecil, sistem masih akan bergetar, namuntetapi pada akhirnya akan berhenti. Keadaan ini disebut kurang redam, dan merupakan kasus yang paling mendapatkan perhatian dalam analisis vibrasi. Bila peredaman diperbesar sehingga mencapai titik saat sistem tidak lagi berosilasi, kita mencapai titik '''redaman kritis'''. Bila peredaman ditambahkan melewati titik kritis ini sistem disebut dalam keadaan lewat redam.
 
Nilai koefisien redaman yang diperlukan untuk mencapai titik redaman kritis pada model massa-pegas-peredam adalah:
Baris 90:
Nilai ''X'', amplitudo awal, dan <math> \phi </math>, [[Fase (gelombang)|ingsutan fase]], ditentukan oleh panjang regangan pegas.
 
Dari solusi tersebut perlu diperhatikan dua hal: faktor eksponensial dan fungsi cosinus. Faktor eksponensial menentukan seberapa cepat sistem teredam: semakin besar nisbah redaman, semakin cepat sistem teredam ke titik nol. Fungsi kosinus melambangkan osilasi sistem, namuntetapi frekuensi osilasi berbeda daripada kasus tidak teredam.
 
Frekuensi dalam hal ini disebut "frekuensi alamiah teredam", ''f<sub>d</sub>'', dan terhubung dengan frekuensi alamiah takredam lewat rumus berikut.
Baris 96:
:<math>f_d= \sqrt{1-\zeta^2} f_n </math>
 
Frekuensi alamiah teredam lebih kecil daripada frekuensi alamiah takredam, namuntetapi untuk banyak kasus praktis nisbah redaman relatif kecil, dan karenanya perbedaan tersebut dapat diabaikan. Karena itu deskripsi teredam dan takredam kerap kali tidak disebutkan ketika menyatakan frekuensi alamiah.
 
<!--Grafik di samping menampilkan bagaimana nisbah redaman sebesar 0,1 dan 0,3 akan memengaruhi bagaimana sistem akan bergetar seiring berjalannya waktu. Yang sering dilakukan dalam praktik adalah mengukur getaran bebas setelah sebuah pukulan (misalnya dengan palu), dan kemudian menentukan frekuensi alamiah sistem dengan mengukur laju osilasi, serta nisbah redaman dengan mengukur laju peluruhan. Frekuensi alamiah dan nisbah peredaman tidak hanya penting dalam getaran bebas, tetapi juga mencirikan bagaimana sistem akan berkelakuan pada getaran paksa. -->