James Gregory: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
k Bot: Penggantian teks otomatis (-Perancis +Prancis)
LaninBot (bicara | kontrib)
k namun (di tengah kalimat) → tetapi
Baris 15:
 
== Membuat teleskop ==
Meskipun kondisi kesehatan Gregory lemah, namuntetapi hal ini tidak menghalangi dirinya untuk mempelajari bidang lain selain matematika. Mempelajari Optiks dan membangun teleskop adalah bidang yang menjadi perhatiannya. Dengan dorongan kakak, David, Gregory menulis buku Optima Promota yang berisi 5 postulat, 37 difinisi dan 59 theorema (sistematika mirip dengan buku Elements dari Euclid) tentang teori refleksi dan refleksi cahaya.
 
Teori cahaya yang dipaparkan dalam buku itu digunakan sebagai dasar untuk membuat teleskop yang mempunyai efek refleksi. Dengan menggunakan cermin konkave (cembung/cekung) berbentuk parabola yang mampu membuat cahaya terkonvergensi pada salah satu fokus cermin konkave elipsodial. Refelsi cahaya yang berasal dari permukaan akan terkonvergensi pada fokus kedua yang terletak di balik cermin.
Baris 21:
Ada lubang di tengah cermin utama yang dibuat agar cahaya dapat melewati dan dinar ini yang dapat ditangkap oleh lensa mata. Tabung untuk teleskop Gregorian ini lebih pendek dibandingkan dengan jumlah lebar antara titik-titik fokus pada kedua cermin. Gagasan untuk menggunakan cermin dan lensa untuk teleskop adalah baru, dan ternyata cara ini lebih efektif daripada menggunakan cermin atau lensa secara terpisah. Cara pembuatan teleskop model itu tidak dapat dilakukan.
 
Tahun 1663, Gregory pergi ke London. Bertemu dengan Collins dan menjadi sahabat sejati. Lewat Collins buku Optima Promota dapat diterbitkan dan menciptakan teleskop yang rancangannya ada dalam buku itu. Collins menyarankan agar Gregory menemui ahli optik bernama Reive, namuntetapi kembali gagal. Teleskop Gregorian ini, akhirnya, dapat dibuat oleh Hooke (baca: Newton dan Halley) sepuluh tahun kemudian.
 
Saat di London, Gregory bertemu dengan Presiden Royal Society, Robert Moray, yang kemudian berusaha mempertemukan Gregory dengan Huygens di Paris, karena mempunyai minat yang sama (baca: Huygens).
Baris 30:
Di Padua, Gregory tinggal di rumah profesor falsafat, Cddenhead yang berasal dari Skotlandia. Kerjasama mereka membuahkan hasil, yaitu Vera circuli et hyperbolae quadratura (1667) dan Geometriae pars universalis (1668) sebelum kembali ke Inggris.
 
Lewat kedua tulisan di atas, Gregory memberi landasan penting bagi geometri infitisimal yang kelak menjadi sangat penting. Lebih dari satu dekade kemudian, ketika analisis sedang mengalami perkembangan yang sangat cepat, sebelum dituntaskan oleh penemuan para matematikawan berikutnya, Newton dan Leibniz (termasuk Huygens, Barrow). Karya itu juga berusaja membuktikan bahwa π dan e adalah bilangan transendental, namuntetapi alasan yang dikemukakan Gregory masih salah, namuntetapi terobosan utama adalah gagasan tentang: konvergen, penentuan fungsi, fungsi-fungsi aljabarik, fungsi-fungsi transendental dan lain-lain.
 
Dua karya besarnya ini, yang isinya merupakan temuan, secara serempak terbit di Prancis, Italia, Belanda dan Inggris. Buku pertamanya merombak Kartesian yang masih membedakan antara kurva-kurva “geometrikal: dan “mekanikal”. Gregory lebih suka membagi matematika ke dalam kelompok theorema ‘umum’ dan theorema ’spesial’, bukan dipilah menjadi fungsi-fungsi aljabar dan transendental.
Baris 47:
∫ sec x dx = ln(sec x + tg x)
 
Rumus ini digunakan untuk menyelesaikan problem klasik dalam pembuatan tabel-tabel untuk pelayaran. Menerbitkan Exercitationes Geometricae sebagai serangan-balasan (counter-attact) terhadap Huygens. Meskipun metode-metode yang dipakai tidak diungkapkan, namuntetapi buku kecil ini mencakup banyak deret, fungsi integral logaritma dan gagasan-gagasan lain yang masih berkaitan. Salah satu deret disebut dengan nama deret Gregory dalam bentuk seperti di bawah ini.
 
x
Baris 61:
Collins mengirimkan buku karangan [Isaac] Barrow kepada Gregory yang kemudian mengembangkan ide dari buku itu sebelum dikirim kepada Collins. Tahun 1671, Gregory menemukan theorema Taylor (tidak pernah dipublikasikan oleh Taylor sampai tahun 1715), dimana theorema itu terdapat pada isi suratnya kepada Collins. Namun begitu ada surat Collins yang menyatakan bahwa Newton juga menemukan hasil serupa, Gregory memutuskan agar Newton menerbitkan temuannya itu sebelum dia sendiri menerbitkan. Rupanya konflik dengan Huygens masih membekas di hatinya dan tidak ingin hal itu terjadi juga antara dirinya dengan Newton.
 
Di ruang atad perpustakaan St. Andrew yang tidak terhalang oleh objek apapun, Gregory memasang teleskop. Menggantungkan jam pendulum di samping jendela untuk melakukan pengamatan. Jam pendulum dibeli di London pada tahun 1673, namuntetapi ide itu sudah dipatenkan oleh Huygens pada tahun 1656, sebelum Huygens menulis teori pendulum.
 
== Pindah ke Edinburgh ==
Baris 75:
== Sumbangsih ==
 
Menekuni bidang yang saling melengkapi, matematika dan astronomi, tanpa kehilangan fokus. Sempat menekuni cahaya dan menggagas, meskipun mentah, dasar-dasar apa yang kemudian hari dikenal sebagai kalkulus. Diawali sebagai upaya menghitung luas bidang tidak beraturan seperti parabola, hiperbola, namuntetapi tidak disangka menjadi cikal-bakal kalkulus.
 
== Referensi ==