Konten dihapus Konten ditambahkan
Tag: Suntingan perangkat seluler Suntingan peramban seluler |
|
=== Luas ===
<math>L= \tfrac{1}{2} \cdot d_1\cdot d_2</math>
=== Diagonal ===
<math>e = \sqrt{a^2 + b^2 - 2 \cdot a \cdot b \cdot \cos(\beta)}</math>
:<math>f = \frac{4 \cdot \sqrt{s \cdot (s - a) \cdot (s - b) \cdot (s - e)}}{e}</math> dengan <math>s = \frac{a + b + e}{2}</math>
:<math>f = 2 \cdot a \cdot \sin\left(\frac{\alpha}{2}\right) = 2 \cdot b \cdot \sin\left(\frac{\gamma}{2}\right)</math>
Lihat [[Teorema Heron]] dan [[Teorema kosinus]]
=== Jari jari melingkar ===
:<math>r = \frac{2 \cdot A}{U} = \frac{e \cdot f}{2 \cdot (a + b)}</math>
=== Sudut interior ===
:<math>\alpha = \arccos\left(\frac{2 \cdot a^2 - f^2}{2 \cdot a^2}\right)</math>
:<math>\gamma = \arccos\left(\frac{2 \cdot b^2 - f^2}{2 \cdot b^2}\right)</math>
:<math>\beta = \delta = \arccos\left(\frac{a^2 + b^2 - e^2}{2 \cdot a \cdot b}\right)</math>
Lihat fungsi [[kosinus]]
== Pranala luar ==
|