Sistem bilangan Hindu-Arab: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Justabdul01 (bicara | kontrib)
k pranala luar
Justabdul01 (bicara | kontrib)
kTidak ada ringkasan suntingan
Baris 10:
 
== Tata letak ==
Sistem angka Hindu-Arab dibuat untuk tata letak kedudukan dalam sistem [[perpuluhan]]. Dalam bentuk yang lebih maju, tata tanda kedudukan juga menggunakan [[penanda perpuluhan|Sistem bilangan desimal]] dan juga satu simbol untuk '' [[:en:Ad_infinitum|ad infinitium]]'' (untuk kegunaan modern, simbol [[Vinculum]] juga digunakan). Sistem angka ini dapat menjadi simbol untuk sembarang [[Bilangan rasional]] dengan menggunakan hanya 13 simbol (sepuluh digit, penanda perpuluhan, vinculum dan pilihan tanda minus pendek untuk menyatakan bilangan negatif).
 
== Simbol ==
Baris 19:
* ''[[Angka Arab timur]]'' yang digunakan dengan [[abjad Arab]], dipercayai mulai berkembang dari kawasan yang sekarang disebut dengan [[Iraq|Irak]]. Variasi angka Arab timur juga terdapat dalam angka Urdu dan Persia. Terdapat beberapa variasi dalam penggunaan glif untuk digit Arab timur terutamanya untuk digit empat, lima, enam, dan tujuh (lihat tabel di bawah).<ref>[http://unicode.org/versions/Unicode5.0.0/ch08.pdf The Unicode Standard 5.0 – Electronic edition, Chapter 8 Middle Eastern Scripts]</ref>
 
* ''[[Angka India]]'' yang digunakan dengan angka dari [[keluarga Brahmik|keluarga Brahmi]] di India dan Asia Tenggara.
 
 
Baris 130:
Kitab ''[[Brahmasphutasiddhanta]] '' yang ditulis pada abad ke-7, mengandungi pemahaman yang agak maju tentang peranan [[0 (nombor)|sifar]] dalam matematik.
 
Terjemahan Sanskrit untuk teks [[Jainisme|kosmologi Jain]] abad ke-5 yang hilang, ''[[https://en.m.wiki-indonesia.club/wiki/Lokavibhaga Lokavibhaga]]'' mungkin memelihara contoh terawal penggunaan kedudukan sifar.<ref>Ifrah, G. The Universal History of Numbers: From prehistory to the invention of the computer. John Wiley and Sons Inc., 2000. Translated from the French by David Bellos, E.F. Harding, Sophie Wood and Ian Monk</ref>
 
Perkembangan di India ini telah diambil alih oleh [[matematik Islam]] pada kurun ke-8, seperti yang direkodkan dalam ''kronologi cendekiawan'' (awal kurun ke-13) karya [[Al-Qifti]].<ref>Tulisan al-Qifti tidak menyatakan tentang sistem angka dengan spesifik, tetapi tentang penerimaan astronomi India [http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/Arabic_numerals.html]:
:''... seseorang dari India telah menghadap [[Al-Mansur|khalifah Al-Mansur]] pada tahun 776, beliau sangat mahir dalam kaedah pengiraan siddhanta berkaitan dengan pergerakan objek langit, dan memiliki pelbagai cara untuk mengira persamaan berasaskan separuh rentasan (sinus) yang dikira dalam separuh darjah....Al-Mansur mengarahkan buku ini diterjemah ke dalam bahasa Arab, dan satu kajian dibuat berdasarkan terjemahan itu bagi memberi orang Arab asas yang teguh untuk mengira pergerakan planet... '' Buku yang dipersembahkan oleh cendekiawan India tersebut berkemungkinan besar adalah ''[[Brahmasphutasiddhanta]] ''.</ref>
 
Sistem angka ini kemudiannya dibincangkan oleh ahli matematik Parsi, [[AbuMuḥammad Abdullahbin Mohammad Ibn MusaMūsā al-KhawarizmiKhawārizmī|Al-Khawarizmi]] dalam bukunya, ''Tentang pengiraan dengan angka Hindu'' (825M) dan ahli matematik Arab [[Ibn Ishaq Al-Kindi|Al-Kindi]] dalam bukunya, ''Tentang penggunaan angka India'' ({{lang|ar|كتاب في استعمال العداد الهندي}} [''kitab fi isti'mal al-'adad al-hindi''] (830M). Kedua karya ini memainkan peranan besar dalam menyebarkan sistem angka India ke seluruh [[dunia Islam]] dan akhirnya ke Eropah. [http://www-gap.dcs.st-and.ac.uk/%7Ehistory/HistTopics/Indian_numerals.html].
 
Dalam [[matematik Islam]] kurun ke-10, sistem ini telah dikembangkan dengan kemasukan subjek [[pecahan]], seperti yang direkodkan dalam karya ahli matematik Arab [[Abu'l-Hasan al-Uqlidisi]] pada tahun 952–953.<ref name=Berggrenn>{{cite book | first=J. Lennart | last=Berggren | title=The Mathematics of Egypt, Mesopotamia, China, India, and Islam: A Sourcebook | chapter=Mathematics in Medieval Islam | publisher=Princeton University Press | year=2007 | isbn=9780691114859 | page=518 }}</ref>