Sistem koordinat polar: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
kTidak ada ringkasan suntingan
InternetArchiveBot (bicara | kontrib)
Add 2 books for Wikipedia:Pemastian (20210209)) #IABot (v2.0.8) (GreenC bot
Baris 4:
'''Sistem koordinat polar''' ('''sistem koordinat kutub''') dalam [[matematika]] adalah suatu [[sistem koordinat]] [[dimensi|2-dimensi]] di mana setiap [[titik (geometri)|titik]] pada [[bidang (geometri)|bidang]] ditentukan dengan [[jarak]] dari suatu titik yang telah ditetapkan dan suatu [[sudut]] dari suatu arah yang telah ditetapkan.
 
Titik yang telah ditetapkan (analog dengan titik origin dalam [[sistem koordinat Kartesius]]) disebut ''pole'' atau "kutub", dan [[:en:ray (geometry)|''ray'' atau "sinar"]] dari kutub pada arah yang telah ditetapkan disebut "aksis polar" (''polar axis''). Jarak dari suatu kutub disebut ''radial coordinate'' atau ''radius'', dan sudutnya disebut ''angular coordinate'', ''polar angle'', atau ''[[azimuth]]''.<ref name="brown">{{Cite book|last = Brown|first = Richard G.|editor = Andrew M. Gleason|year = 1997|title = Advanced Mathematics: Precalculus with Discrete Mathematics and Data Analysis|url = https://archive.org/details/advancedmathemat00rich_0|publisher = McDougal Littell|location = Evanston, Illinois|isbn = 0-395-77114-5}}</ref>
 
[[Grégoire de Saint-Vincent]] dan [[Bonaventura Cavalieri]] secara independen memperkenalkan konsep-konsep tersebut pada pertengahan abad ketujuh belas, meskipun istilah sebenarnya '' koordinat polar '' telah dikaitkan. Motivasi awal untuk pengenalan sistem polar adalah mempelajari [[gerakan melingkar|melingkar]] dan [[gerakan orbital]].
Baris 68:
:<math>y = r \sin \varphi \,</math>
 
[[Sistem koordinat Kartesius|Koordinat Kartesius]] ''x'' dan ''y'' dapat dikonversi ke dalam koordinat polar ''r'' dan ''φ'' dengan ''r''&nbsp;≥&nbsp;0 dan ''φ'' dalam interval (−π, π] dengan:<ref>{{Cite book|first=Bruce Follett|last=Torrence|author2=Eve Torrence|title=The Student's Introduction to Mathematica|url=https://archive.org/details/studentsintroduc0000torr|year=1999|publisher=Cambridge University Press|isbn=0-521-59461-8}}</ref>
 
:<math>r = \sqrt{x^2 + y^2} \quad</math> (sebagaimana dalam [[teorema Pythagoras]] atau [[Norma Euklides]]), dan