Trigonometri: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
FelixJL111 (bicara | kontrib) Tidak ada ringkasan suntingan Tag: Suntingan visualeditor-wikitext |
Dedhert.Jr (bicara | kontrib) Perbaikan rumus + Perbaikan tata bahasa |
||
Baris 32:
'''Fungsi dasar''':
:<math>\sin A = \frac{a}{c} </math>
:<math>\cos A = \frac{b}{c} </math>
:<math>\tan A = \frac{\sin A}{\cos A} = \frac{a}{b} </math>
:<math>\cot A = \frac{1}{\tan A} = \frac{\cos A}{\sin A} = \frac{b}{a} </math>
:<math>\sec A = \frac{1}{\cos A} = \frac{c}{b} </math>
:<math>\csc A = \frac{1}{\sin A} = \frac{c}{a} </math>
== Identitas trigonometri ==
:<math>\sin^2 A + \cos^2 A = 1 </math>
:<math>1 + \tan^2 A = \frac{1}{\cos^2 A} = \sec^2 A </math>
:<math>1 + \cot^2 A = \frac{1}{\sin^2 A} = \csc^2 A </math>
== Kesamaan nilai trigonometri ==
:<math>
:<math>
:<math>
== Rumus jumlah dan selisih sudut ==
:<math>\sin (A + B) = \sin A \cos B + \cos A \sin B </math>
:<math>\sin (A - B) = \sin A \cos B - \cos A \sin B </math>
:<math>\cos (A + B) = \cos A \cos B - \sin A \sin B </math>
:<math>cos (A - B) = cos A cos B + sin A sin B </math>
:<math>\tan (A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} </math>
:<math>\tan (A - B) = \frac{\tan A - tan B}{1 +\ tan A \tan B} </math>
== Rumus perkalian trigonometri ==
:<math>2 \sin A \cos B = \sin (A + B) + \sin (A - B) </math>
:<math>2 \cos A \sin B = \sin (A + B) - \sin (A - B) </math>
:<math>2 \cos A \cos B = \cos
:<math>2 \sin A \sin B = - \cos
== Rumus jumlah dan selisih trigonometri ==
:<math>\sin A + \sin B = 2 \sin
:<math>\sin A - \sin B = 2 \cos \left(\frac{
:<math>\cos A + \cos B = 2 \cos \left( \frac{
:<math>\cos A - \cos B = - 2 \sin \left(\frac{
:<math>\tan A + \tan B = \tan (A + B) \cdot (1 - \tan A \tan B)</math>
:<math>\tan A - \tan B = \tan (A - B) \cdot (1 + \tan A \tan B)</math>
:<math>\sin A + \sin B + \sin C = 4 \sin \left( \frac{A}{2} \right) \cdot \sin \left(\frac{B}{2}\right) \cdot \sin \left(\frac{C}{2} \right)</math>
:<math>\cos A + \cos B + \cos C = 1 + 4 \sin \left(\frac{A}{2}\right) \cdot \sin \left(\frac{B}{2} \right) \cdot \sin \left(\frac{C}{2} \right)</math>
:<math>\tan A + \tan B + \tan C = \tan A \cdot \tan B \cdot \tan C</math>
== Rumus sudut rangkap dua ==
:<math>\sin 2A = 2 \sin A \cos A </math>
:<math>\cos 2A = \cos^2 A - \sin^2 A = 1 - 2 \sin^2 A = 2 \cos^2 A - 1</math>
:<math>\tan 2A = \frac{2 \tan A}{1 - \tan^2 A} = \frac{2 \cot A}{\cot^2 A - 1} = \frac{2}{\cot A - \tan A} </math>
== Rumus sudut rangkap tiga ==
:<math>\sin 3A = 3 \sin A - 4 \sin^3 A </math>
:<math>\cos 3A = 4 \cos^3 A - 3 \cos A </math>
:<math>\tan 3A = \frac{3 \tan A - \tan^3 A}{1 - 3 \tan^2 A} </math>
== Rumus setengah sudut ==
:<math>\sin \left(\frac{A}{2} \right) = \pm \sqrt{\frac{1-\cos A}{2}} </math>
:<math>\cos \left(\frac{A}{2}\right) = \pm \sqrt{\frac{1+\cos A}{2}} </math>
:<math>\tan \left(\frac{A}{2}\right) = \pm \sqrt{\frac{1-\cos A}{1+\cos A}} = \frac {\sin A}{1+\cos A} = \frac {1-\cos A}{\sin A} </math>
== Persamaan trigonometri ==
:Jika <math>\sin x = \sin \alpha </math>, maka <math>x = \alpha + k \cdot 360^\circ \text{ atau }x = (180^\circ - \alpha) + k \cdot 360^\circ</math>
:Jika <math>\
:Persamaan <math>a \
== Lihat pula ==
|