{{Main article|Implementasi matematika dalam teori himpunan}}
Definisi formal produk Cartesian dari prinsip [[teori himpunan|teori himpunan]] mengikuti dari definisi [[pasangan terurut]]. Definisi paling umum dari pasangan terurut, [[Definisi pasangan berurutan#Kuratowski|Definisi Kuratowski]] adalah <math>(x, y) = \{\{x\},\{x, y\}\}</math>. Di bawah ini pada terdapat definisi <math>(x, y)</math> adalah elemen dari <math>\mathcal{P}(\mathcal{P}(X \cup Y))</math>, dan <math>X\times Y</math> adalah bagian dari himpunan itu, di mana <math>\mathcal{P}</math> mewakili operator [[set daya]]. Oleh karena itu, keberadaan perkalian Kartesius dari dua himpunan manapun di [[ZFC]] mengikuti aksioma [[aksioma pemasangan|pemasangan]], [[aksioma serikat | serikat]], [[aksioma himpunan daya|himpunan daya]], dan [[skema aksioma spesifikasi|spesifikasi]]. Karena [[fungsi (matematika)|fungsi]] biasanya didefinisikan sebagai kasus khusus dari [[hubungan (matematika)|hubungan]], dan hubungan biasanya didefinisikan sebagai himpunan bagian dari produk Kartesius, definisi dari perkalian dua himpunan Cartesian harus sebelum sebagian besar definisi lainnya.