Monoid: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Tidak ada ringkasan suntingan Tag: Suntingan perangkat seluler Suntingan peramban seluler Suntingan seluler lanjutan |
Tag: Suntingan perangkat seluler Suntingan peramban seluler Suntingan seluler lanjutan |
||
Baris 44:
== Contoh ==
* Dari 16 kemungkinan [[tabel kebenaran#Tabel kebenaran untuk semua
* Himpunan [[bilangan asli]] <math>\N = \{0,1,2,\ldots\}</math> adalah monoid komutatif dibawah penjumlahan (elemen identitas [[0 (bilangan)|0]]) atau perkalian (elemen identitas [[1 (bilangan)|1]]). Submonoid dari {{math|'''N'''}} dibawah penambahan disebut [[monoid numerik]].
* Himpunan [[bilangan bulat positif]] <math>\N \setminus \{0\}</math> adalah monoid komutatif dalam perkalian (elemen identitas 1).
* Diberikan himpunan {{mvar|A}}, himpunan himpunan bagian dari {{mvar|A}} adalah monoid komutatif dibawah (elemen identitasnya adalah {{mvar|A}} sendiri).
* Diberikan himpunan {{mvar|A}}, himpunan bagian dari {{mvar|A}} adalah monoid komutatif dibawah gabungan (elemen identitas adalah [[himpunan kosong]]).
* Generalisasi contoh sebelumnya, setiap [[semikis]] batas adalah monoid komutatif [[idempoten]].
** Secara khusus, setiap [[kisi (order)|kisi]] berbatas dapat diberkahi dengan struktur monoid [[gabungan dan bertemu (matematika)|bertemu]] dan [[gabungan dan bertemu (matematika)|gabungan]]. Elemen identitas adalah bagian atas dan bawah kisi. Karena kisi-kisi, [[Aljabar Heyting]] dan [[Aljabar Boolean (struktur)|Aljabar Boolean]] diberkahi dengan struktur monoid ini.
* Setiap [[himpunan singleton]] {{math|{{mset|''x''}}}} penutupan dibawah operasi biner • bentuk monoid trivial (satu elemen) merupakan [[grup trivial]].
* Setiap [[grup (matematika)|grup]] adalah monoid dan setiap [[grup abelian]] adalah monoid komutatif.
* Semua [[semigrup]] {{mvar|S}} dapat diubah menjadi monoid dengan menggabungkan elemen {{mvar|e}} bukan {{mvar|S}} dan menentukan {{math|1=''e'' • ''s'' = ''s'' = ''s'' • ''e''}} untuk semua {{math|''s'' ∈ ''S''}}. Konversi semigrup di monoid ini dilakukan oleh [[funktor bebas]] antara kategori semigrup dan kategori monoid.<ref>{{citation|title=Teori-q dari Semigrup Hingga: Sebuah Pendekatan Baru|volume=71|series=Springer Monographs in Mathematics|first1=John|last1=Rhodes|first2=Benjamin|last2=Steinberg|publisher=Springer|year=2009|isbn=9780387097817|page=22|url=https://books.google.com/books?id=8L0QIEj0PI4C&pg=PA22}}.</ref>
** Jadi, monoid idempoten (sebagai ''temukan-pertama'') dapat dibentuk dengan menggabungkan elemen identitas {{mvar|e}} ke [[semigrup nol kiri]] diatas himpunan {{mvar|S}}. Monoid (disebut ''temukan-terakhir'') bentuk dari [[grup nol kanan]] diatas {{mvar|S}}.
*** Adjoin dari sebuah identitas {{mvar|e}} ke semigrup kiri-nol dengan dua elemen {{math|{{mset|lt, gt}}}}. Kemudian monoid idempoten dihasilkan {{math|{{mset|lt, ''e'', gt}}}} memodelkan [[urutan leksikografis]] dari suatu urutan yang diberi urutan elemennya, dengan ''e'' mewakili persamaan.
* Himpunan yang mendasari setiap [[gelanggang (aljabar)|gelanggang]], dengan operasi penjumlahan atau perkalian. Menurut definisi, gelanggang memiliki identitas perkalian 1.
** [[Bilangan bulat]], [[bilangan rasional]], [[bilangan riil]], atau [[bilangan kompleks]], dengan operasi penjumlahan atau perkalian.{{sfn|Jacobson|2009|p=29, examples 1, 2, 4 & 5}}
** Himpunan semua {{mvar|n}} oleh {{mvar|n}} [[matriks (matematika)|matriks]] diatas gelanggang tertentu, dengan [[penambahan matriks]] atau [[perkalian matriks]] sebagai operasi.
* Himpunan semua [[string (ilmu komputer)|string]] hingga beberapa alfabet tetap {{math|Σ}} membentuk monoid dengan [[rangkaian string]] sebagai operasinya. [[String kosong]] berfungsi sebagai elemen identitas. Monoid ini dilambangkan {{math|Σ<sup>∗</sup>}} dan disebut '''[[monoid bebas]]''' di atas {{math|Σ}}.
* Diberikan monoid {{math|''M''}}, ''monoid berlawanan'' {{math|''M''<sup>op</sup>}} memiliki himpunan operasi dan elemen identitas yang sama {{math|''M''}}, dan operasi ditentukan oleh {{math|1=''x'' •<sup>op</sup> ''y'' = ''y'' • ''x''}}. [[Monoid komutatif]] adalah kebalikan dari monoid itu sendiri.
* Diberikan dua himpunan {{mvar|M}} dan {{mvar|N}} dengan struktur monoid (atau, secara umum, sejumlah terbatas monoid, {{math|''M''<sub>1</sub>, …, ''M<sub>k</sub>'')}}, [[produk Kartesius]] mereka {{math|''M'' × ''N''}} adalah monoid (masing-masing, {{math|''M<sub>1</sub>'' × ⋯ × ''M<sub>k</sub>''}}). Operasi asosiatif dan elemen identitas ditentukan berpasangan.{{sfn|Jacobson|2009|p=35}}
* Monoid {{math|''M''}}. Himpunan semua fungsi dari himpunan tertentu ke {{math|''M''}} adalah monoid. Elemen identitas adalah [[fungsi konstanta]] yang memetakan nilai ke identitas {{math|''M''}}; operasi asosiatif ditentukan [[sesetitik]].
* Monoid {{math|''M''}} dengan operasi {{math|•}} dan elemen identitas {{mvar|e}}, dan pertimbangkan [[himpunan kuasa]] {{math|''P''(''M'')}} terdiri dari semua [[himpunan bagian]] dari {{math|''M''}}. Operasi biner untuk himpunan bagian tersebut dapat ditentukan dengan {{math|1=''S'' • ''T'' = {{mset| ''s'' • ''t'' : ''s'' ∈ ''S'', ''t'' ∈ ''T'' }}}}. Nilai berubah ke {{math|''P''(''M'')}} menjadi monoid dengan elemen identitas {{math|{{mset|''e''}}}}. Dengan cara yang sama, himpunan kuasa grup {{math|''G''}} adalah monoid di bawah [[produk himpunan bagian grup]].
* Misalkan {{mvar|S}} menjadi satu himpunan. Himpunan semua fungsi {{math|''S'' → ''S''}} membentuk monoid dibawah [[komposisi fungsi]]. Identitas hanyalah [[fungsi identitas]]. Ini disebut sebagai '''[[monoid transformasi penuh]]''' dari {{mvar|S}}. Jika {{mvar|S}} hingga dengan elemen {{mvar|n}}, monoid fungsi pada {{mvar|S}} hingga dengan elemen {{math|''n''<sup>''n''</sup>}}.
* Generalisasi contoh sebelumnya, misalkan {{math|''C''}} menjadi [[kategori (matematika)|kategori]] dan {{math|''X''}} objek {{math|''C''}}. Himpunan dari semua [[endomorfisme]] dari {{math|''X''}}, dilambangkan {{math|End<sub>''C''</sub>(''X'')}}, membentuk monoid dibawah komposisi [[morfisme]]. Untuk lebih lanjut tentang relasi antara teori kategori dan monoid, lihat dibawah.
* Himpunan [[homeomorfisme]] [[Kelas (teori himpunan)|kelas]] dari [[permukaan kompak]] dengan [[jumlah terhubung]]. Elemen unitnya adalah kelas bola-2 biasa. Selanjutnya, jika {{math|''a''}} menunjukkan kelas dari [[torus]], dan ''b'' menunjukkan kelas bidang proyektif, maka setiap elemen ''c'' dari monoid memiliki ekspresi unik berupa {{math|1=''c'' = ''na'' + ''mb''}} dimana {{mvar|n}} adalah bilangan bulat positif dan {{math|1=''m'' = 0, 1}}, atau {{math|2}}. Maka {{math|1=3''b'' = ''a'' + ''b''}}.
* Maka <math>\langle f\rangle</math> menjadi monoid siklik urutan {{mvar|n}}, yaitu <math>\langle f\rangle = \left\{f^0,f^1,\dots,f^{n-1}\right\}</math>. Kemudian <math>f^n = f^k</math> untuk beberapa <math>0 \le k < n</math>. Faktanya, setiap {{mvar|''k''}} tersebut memberikan monoid yang berbeda dengan urutan {{mvar|n}}, dan setiap monoid siklik isomorfik untuk salah satu dari ini.<br/>Selain itu, {{mvar|f}} sebagai fungsi pada titik <math>\{0,1,2,\dots,n-1\}</math> diberikan oleh
:: <math>\begin{bmatrix}
0 & 1 & 2 & \cdots & n-2 & n-1 \\
1 & 2 & 3 & \cdots & n-1 & k\end{bmatrix}</math>
:atau, secara ekuivalen
:: <math>f(i) := \begin{cases} i+1, & \text{jika } 0 \le i < n-1 \\ k, & \text{jika } i = n-1. \end{cases} </math>
:Perkalian elemen dalam <math>\langle f\rangle</math> kemudian diberikan komposisi fungsi.
:Jadi <math>k = 0</math> maka fungsi {{mvar|f}} adalah permutasi dari <math>\{0,1,2,\dots,n-1\},</math> dan [[grup siklik]] unik dari urutan {{mvar|n}}.
== Tindakan dan monoid operator ==
|