Grup kuaternion: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
k v2.04b - Fixed using Wikipedia:ProyekWiki Cek Wikipedia (Templat dengan kontrol karakter Unicode - Spasi dalam kategori - Kode en dash atau em dash - Kesalahan pranala pipa) |
Rescuing 5 sources and tagging 0 as dead.) #IABot (v2.0.9.5 |
||
Baris 35:
== Tabel Cayley ==
[[Tabel Cayley]] (tabel perkalian) untuk Q<sub> 8 </sub> diberikan oleh:<ref>See also [http://www.wolframalpha.com/input/?i=Quaternion+group a table] {{Webarchive|url=https://web.archive.org/web/20180428182021/http://www.wolframalpha.com/input/?i=Quaternion+group |date=2018-04-28 }} dari [[Wolfram Alpha]]</ref>
{|class="wikitable" style="text-align:right"
Baris 73:
Seseorang mungkin mengambil, misalnya, <math>i = x, j = y</math>, dan <math>k = xy</math>.
Grup quaternion memiliki properti yang tidak biasa sebagai [[grup Hamiltonian | Hamiltonian]]: Q<sub>8</sub> non-abelian, tetapi setiap [[subgrup]] adalah [[subgrup normal | normal]].<ref>See Hall (1999), [https://books.google.com/books?id=oyxnWF9ssI8C&pg=PA190 p. 190] {{Webarchive|url=https://web.archive.org/web/20230809152949/https://books.google.com/books?id=oyxnWF9ssI8C&pg=PA190 |date=2023-08-09 }}</ref> Every Hamiltonian group contains a copy of Q<sub>8</sub>.<ref>See Kurosh (1979), [https://books.google.com/books?id=rp9c0nyjkbgC&pg=PA67 p. 67]</ref>
Grup angka empat Q<sub> 8 </sub> dan grup dihedral D<sub> 4 </sub> adalah dua contoh terkecil dari grup non-abelian [[grup nilpoten | nilpoten]].
Baris 368:
== Pranala luar ==
* {{MathWorld | urlname = QuaternionGroup | title = Quaternion group}}
* [http://groupnames.org/#?quaternion Quaternion groups on GroupNames] {{Webarchive|url=https://web.archive.org/web/20230809151837/https://people.maths.bris.ac.uk/~matyd/GroupNames/#?quaternion |date=2023-08-09 }}
* Quaternion group on [https://groupprops.subwiki.org/wiki/Quaternion_group GroupProps] {{Webarchive|url=https://web.archive.org/web/20230514031705/http://groupprops.subwiki.org/wiki/Quaternion_group |date=2023-05-14 }}
* Conrad, Keith. [https://kconrad.math.uconn.edu/blurbs/grouptheory/genquat.pdf "Generalized Quaternions"] {{Webarchive|url=https://web.archive.org/web/20230602170727/https://kconrad.math.uconn.edu/blurbs/grouptheory/genquat.pdf |date=2023-06-02 }}
[[Kategori:Teori grup]]
|