E (konstanta matematika): Perbedaan antara revisi

Konten dihapus Konten ditambahkan
HsfBot (bicara | kontrib)
k +{{Authority control}}
Baris 56:
Batasan varian unit (dan juga deviasi standar unit) menghasilkan {{frac2|1|2}} dalam eksponen, dan batasan luas total unit di bawah kurva <math>\phi(x)</math> menghasilkan faktor <math>\textstyle 1/\sqrt{2\pi}</math>.<sup>[[Integral Gaussian|[bukti]]]</sup> Fungsi ini simetris {{math|1=''x'' = 0}}, di mana ia mencapai nilai maksimumnya <math>\textstyle 1/\sqrt{2\pi}</math>, dan memiliki [[titik belok]] di {{math|1=''x'' = ±1}}.
 
===KesalahanKekacauan===
Aplikasi lain dari {{mvar|e}}, juga ditemukan sebagian oleh Jacob Bernoulli bersama dengan [[Pierre Raymond de Montmort]], Ada dalam masalah [[kekacauan]], juga dikenal sebagai ''masalah cek topi'':<ref>Grinstead, C.M. dan Snell, J.L.''[http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/book.html Introduction to probability theory]'' (diterbitkan secara online di bawah [[GFDL]]), p.&nbsp;85.</ref> {{math|''n''}} tamu diundang ke pesta, dan di depan pintu, semua tamu memeriksa topi mereka dengan kepala pelayan, yang pada gilirannya menempatkan topi ke dalam {{math|''n''}} kotak, masing-masing diberi label dengan nama satu tamu. Tapi kepala pelayan belum menanyakan identitas para tamu, jadi dia menempatkan topi ke dalam kotak yang dipilih secara acak. Masalah de Montmort adalah menemukan probabilitas itu, tidak ada topi yang dimasukkan ke kotak kanan. Probabilitas ini, dilambangkan dengan <math>p_n\!</math>, is: