Penambahan: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Klasüo (bicara | kontrib)
Tag: Suntingan perangkat seluler Suntingan peramban seluler Suntingan seluler lanjutan
Klasüo (bicara | kontrib)
Tidak ada ringkasan suntingan
Tag: Suntingan perangkat seluler Suntingan peramban seluler Suntingan seluler lanjutan
Baris 412:
 
[[Konvolusi]] digunakan untuk menambahkan dua [[variabel acak]] independen yang ditentukan oleh [[distribusi probabilitas|fungsi distribusi]]. Definisi yang biasa menggabungkan integrasi, pengurangan, dan perkalian. Secara umum, konvolusi berguna sebagai semacam penambahan sisi domain; sebaliknya, penambahan vektor adalah semacam penambahan sisi jangkauan.
<!--
 
==Lihat Aksioma pula==
* [[Perhitungan mental|Aritmetika mental]]
{{Main|Aksioma Peano}}
* [[PenambahanPenjumlahan paralel (matematika)]]
Dalam buku '' [[Arithmetices principal, nova methodo exposita]] '', [[Giuseppe Peano]] mengajukan aksioma untuk aritmatika berdasarkan aksioma-nya untuk bilangan asli.<ref>{{cite web |url=http://planetmath.org/encyclopedia/PeanoArithmetic.html |title=Peano arithmetic |publisher=[[PlanetMath]] |access-date=2007-06-03 |archive-url=https://web.archive.org/web/20070819031025/http://planetmath.org/encyclopedia/PeanoArithmetic.html |archive-date=2007-08-19 |url-status=live }}</ref> Aritmatike peano memiliki dua aksioma untuk perkalian:
* [[Aritmetika verbal]] (juga dikenal sebagai kriptaritmakriptoaritma), teka-teki yang melibatkan penambahanpenjumlahan
:<math>x \times 0 = 0</math>
:<math>x \times S(y) = (x \times y) + x</math>
 
==Catatan==
Di sini '' S '' ('' y '') mewakili [[pengganti ordinal|penerus]] dari '' y '', atau bilangan asli yang '' mengikuti '' '' y ''. Berbagai sifat seperti asosiatif dapat dibuktikan dari ini dan aksioma aritmatika Peano lainnya termasuk [[Induksi matematika|induksi]]. Misalnya '' S ''(0), dilambangkan dengan 1, adalah identitas perkalian karena
{{Notelist}}
:<math>x \times 1 = x \times S(0) = (x \times 0) + x = 0 + x = x</math>
 
Aksioma untuk [[bilangan bulat]] biasanya mendefinisikannya sebagai kelas ekivalen dari pasangan bilangan asli yang terurut. Modelnya didasarkan pada perawatan (''x'',''y'') setara dengan {{nowrap|''x'' − ''y''}} jika ''x'' dan ''y'' diperlakukan sebagai bilangan bulat. Jadi baik (0,1) dan (1,2) sama dengan −1. Aksioma perkalian untuk bilangan bulat didefinisikan dengan cara ini
:<math>(x_p,\, x_m) \times (y_p,\, y_m) = (x_p \times y_p + x_m \times y_m,\; x_p \times y_m + x_m \times y_p)</math>
 
Aturan yang −1 × −1 = 1 dapat disimpulkan
:<math>(0, 1) \times (0, 1) = (0 \times 0 + 1 \times 1,\, 0 \times 1 + 1 \times 0) = (1,0)</math>
 
Perkalian diperluas dengan cara yang mirip dengan [[bilangan rasional]] dan kemudian ke [[bilangan riil]].
 
== Perkalian dengan teori himpunan ==
Hasil perkalian bilangan bulat bukan negatif dapat ditentukan dengan teori himpunan menggunakan [[Bilangan pokok#Perkalian Kardinal|bilangan pokok]] atau [[Aksioma Peano#Aritmetika| Aksioma Peano]]. Lihat [[#Perkalian berbagai jenis bilangan|di bawah]] bagaimana cara mengalikan bilangan bulat sembarangan, lalu bilangan rasional sembarang. Produk dari bilangan riil didefinisikan dalam hal produk dari bilangan rasional, lihat [[konstruksi bilangan riil]].
 
== Lihat pula ==
* [[Perhitungan mental|Aritmetika mental]]
* [[Penambahan paralel (matematika)]]
* [[Aritmetika verbal]] (dikenal sebagai kriptaritma), teka-teki yang melibatkan penambahan
 
== Catatan Kaki kaki==
{{Reflist}}
 
== Referensi ==
{{Refbegin}}
'''Sejarah'''
Baris 451 ⟶ 433:
 
'''Matematika elementer'''
* {{cite book |author1=Sparks, F. |author2=Rees C. |title=A Survey of Basic Mathematics |url=https://archive.org/details/surveyofbasicmat0000spar |publisher=McGraw-Hill |year=1979 |isbn=978-0-07-059902-4}}
 
'''Pendidikan'''
Baris 490 ⟶ 472:
* {{Cite book |last=Viro |first=Oleg |year=2001 |url=http://www.math.uu.se/~oleg/dequant/dequantH1.html |title=European Congress of Mathematics: Barcelona, July 10–14, 2000, Volume I. Dequantization of Real Algebraic Geometry on Logarithmic Paper |editor1-first=Carles |editor1-last=Cascuberta |editor2-first=Rosa Maria |editor2-last=Miró-Roig |editor3-first=Joan |editor3-last=Verdera |editor4-first=Sebastià |editor4-last=Xambó-Descamps |publisher=Birkhäuser |location=Basel |isbn=978-3-7643-6417-5 |series=Progress in Mathematics |volume=201 |pages=135–146 |arxiv=math/0005163 |zbl=1024.14026 |bibcode=2000math......5163V }}
 
'''MenghitungKomputasi'''
* {{cite book |author1=Flynn, M. |author2=Oberman, S. |title=Advanced Computer Arithmetic Design |publisher=Wiley |year=2001 |isbn=978-0-471-41209-0}}
* {{cite book |author1=Horowitz, P. |author2=Hill, W. |title=The Art of Electronics |edition=2 |publisher=Cambridge UP |year=2001 |isbn=978-0-521-37095-0 |url=https://archive.org/details/artofelectronics00horo }}
Baris 499 ⟶ 481:
{{Refend}}
 
== Bacaan lebih lanjut ==
* {{cite conference |last1=Baroody |first1=Arthur |last2=Tiilikainen |first2=Sirpa |title=The Development of Arithmetic Concepts and Skills. Two perspectives on addition development |year=2003 |page=[https://archive.org/details/developmentofari0000unse/page/75 75] |isbn=0-8058-3155-X |publisher=Routledge |url=https://archive.org/details/developmentofari0000unse/page/75 }}
* {{cite book |last1=Davison |first1=David M. |last2=Landau |first2=Marsha S. |last3=McCracken |first3=Leah |last4=Thompson |first4=Linda |title=Mathematics: Explorations & Applications |edition=TE |publisher=Prentice Hall |year=1999 |isbn=978-0-13-435817-8}}
Baris 505 ⟶ 487:
* {{cite journal |last=Poonen |first=Bjorn |year=2010 |title=Addition |url=http://www.girlsangle.org/page/bulletin.php |journal=Girls' Angle Bulletin |volume=3 |issue=3–5 |issn=2151-5743}}
* {{cite conference |first=J. Fred |last=Weaver |book-title=Addition and Subtraction: A Cognitive Perspective. Interpretations of Number Operations and Symbolic Representations of Addition and Subtraction |year=1982 |page=60 |isbn=0-89859-171-6 |publisher=Taylor & Francis}}
 
{{Aritmetika dasar}}
{{Operasi-hiper}}
{{Authority control}}
 
[[Kategori:AritmetikaPenambahan| dasar]]
[[Kategori:OperasiAritmetika binerDasar]]
[[Kategori:Notasi matematika]]
[[Kategori:Artikel dengan contoh kode C]]