Pengguna:Klasüo/bak pasir: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Tag: Suntingan perangkat seluler Suntingan peramban seluler Suntingan seluler lanjutan |
Tag: Suntingan perangkat seluler Suntingan peramban seluler Suntingan seluler lanjutan |
||
Baris 330:
==Complex roots==
[[Berkas:Complex fifth roots.svg|mini|Die fünf fünften Wurzeln aus 1 + i√3 = 2 · e<sup>π · i/3</sup>]]
[[Datei:DritteWurzelAusZ V2.jpg|mini|Die drei Lösungen der Gleichung <math>w^3 = z</math> in der komplexen <math>w</math>-Ebene (rotes, grünes, blaues Gitter). Das rote Netz bildet außerdem die Funktion <math>\sqrt[3] z</math> ab. Das große farbige <math>z</math>-Dreieck und seine drei <math>w</math>-Bilder dienen als Orientierungshilfe.]]
Die [[Komplexe Zahl|komplexen Zahlen]] <math>\Complex</math> werden definiert durch die [[Adjunktion (Algebra)#Adjunktion algebraischer Elemente zu einem Körper|Adjunktion]] <math>\Complex:=\R(\mathrm i)</math> der Lösung (Wurzel) <math>\mathrm i := \sqrt{-1}</math> der Gleichung <math>\mathrm i^2 = -1</math> zu den reellen Zahlen <math>\R</math>. Fasst man die komplexen Zahlen als Ebene <math>\R\times\R</math> auf, in der die reellen Zahlen als eine ausgezeichnete Gerade <math>\R\times{0}</math> die Ebene in zwei Halbebenen teilt und die positiven Zahlen sich rechts befinden, dann wird die Zahl <math>\mathrm i</math> in die obere und <math>-\mathrm i</math> in die untere Halbebene platziert. Gleichzeitig mit dieser Orientierung wird der Nullpunkt <math> (0,0) </math> durch die Funktion <math>\mathrm e^{\mathrm i\varphi}</math> für wachsendes reelles <math>\varphi</math> im [[Drehrichtung#Mathematische Definitionen bezüglich Koordinatensystemen|mathematisch positiven Sinn]] (also entgegen dem Uhrzeigersinn) umlaufen, so dass <math>\scriptstyle \mathrm e^{\pm \frac{\pi}2 \mathrm i} = \pm \mathrm i</math> ist. Mit dieser Maßgabe lassen sich inhärent mehrdeutige Wurzeln im Komplexen auf eindeutige Real- und Imaginärteile ([[Quadratwurzel#Quadratwurzeln aus komplexen Zahlen|''Hauptwerte'']]) festlegen.
Gleichwohl ist bei der Anwendung der [[#Die Wurzelgesetze|Wurzelgesetze]] die dort erwähnte Sorgfalt zu beachten.
Als ''die'' <math>n</math>''-ten Wurzeln'' einer [[Komplexe Zahl|komplexen Zahl]] <math>a\in\mathbb C</math> bezeichnet man die Lösungen der Gleichung
: <math>z^n = a </math>.
Ist <math>a\neq 0</math> in der [[Komplexe Zahlen#Polarform|Exponentialform]] <math>a=|a|\,\mathrm e^{\mathrm i\varphi}</math> dargestellt, so sind die <math>n</math>-ten Wurzeln aus <math>a</math> genau die <math>n</math> komplexen Zahlen
: <math>z_k=\sqrt[n]{|a|}\cdot\exp\left(\frac{\mathrm i\varphi}{n} + k\cdot\frac{2\pi\mathrm i}{n}\right)\quad(k=0,1,\dots,n-1)</math>
Der Sonderfall <math>a=1</math> wird als ''{{nowrap|<math>n</math>-te}} Kreisteilungsgleichung'' bezeichnet, die Lösungen als {{nowrap|<math>n</math>-te}} [[Einheitswurzel]]n. Die Bezeichnung „Kreisteilungsgleichung“ erklärt sich, wenn man ihre Lösungen in der Gaußschen Ebene betrachtet: die {{nowrap|<math> n </math>-ten}} Einheitswurzeln teilen den Kreis mit dem Radius <math>1</math> und dem Koordinatenursprung als Mittelpunkt in <math>n</math> gleiche Teile, sie bilden die Eckpunkte eines in den Kreis einbeschriebenen regulären {{nowrap|<math>n</math>-Ecks.}}
Anders als bei reellen Zahlen kann man nicht so einfach eine der Wurzeln als ''die'' Wurzel auszeichnen; dort wählt man die einzige nichtnegative Wurzel. Man kann jedoch eine ([[Holomorphe Funktion|holomorphe]]) {{nowrap|<math>n</math>-te}} Wurzelfunktion für komplexe Zahlen, die keine nichtpositiven reellen Zahlen sind, über den Hauptzweig des [[Komplexer Logarithmus|komplexen Logarithmus]] definieren:
: <math>z^{1/n} = \exp{\frac{\ln z}{n}} \quad (z\in\mathbb C\setminus\{x\in\mathbb R\mid x\leq0\})</math>
Die so ausgezeichnete Wurzel bezeichnet man auch als Hauptwert, die anderen als Nebenwerte.
Man kann den Logarithmus auch (unstetig) auf die negative reelle Achse fortsetzen, es gilt dann aber mit der so definierten Wurzelfunktion beispielsweise <math>\sqrt[3]{-8} = 2\,\exp{\bigl(\mathrm{i}\,\tfrac{\pi}{3}\bigr)} = 1+\mathrm i\sqrt3</math> und nicht <math>=-2</math>.<ref>Dies lässt sich vermeiden mit der Auszeichnung derjenigen Wurzel unter allen, deren [[Komplexe Zahlen#Polarform|Argument]] <math>\arg(\sqrt[n]z)</math> [[modulo]] <math>\pi</math> den [[Betragsfunktion|absolut]] kleinsten Rest liefert. Bei Gleichheit zweier Werte ist dann der in der rechten (positiver Realteil) und der in der oberen Halbebene (positiver Imaginärteil) auszuwählen. Diese Regel ist mit den oben aufgestellten Regeln für reelle Radikanden voll kompatibel. Einige Beispiele:
: <math>\sqrt[2]{-1}= +\mathrm i \qquad \qquad \sqrt[3]{-1}=-1 \qquad \qquad \sqrt[4]{-1}=\frac{\sqrt 2+\mathrm i \sqrt 2}2</math>
Als weiteres Beispiel sei <math>\sqrt[3]{-\mathrm i} </math> angegeben:
:{| style="text-align:center"
|-
|style="text-align:left"| Obwohl |||| <math>\mathrm i^3 = -\mathrm i </math> || und || <math>\biggl(\frac{\sqrt 3 -\mathrm i }2\biggr)^3 = -\mathrm i </math> || und || <math>\biggl(\frac{-\sqrt 3 -\mathrm i }2\biggr)^3 = -\mathrm i ,</math>
|-
|style="text-align:left"| ist |||| <math>\mathrm i </math> || <math>\ne </math> || <math>\sqrt[3]{-\mathrm i}=\frac{\sqrt 3 -\mathrm i }2 </math> || <math>\ne </math> || <math>\frac{-\sqrt 3 -\mathrm i }2 </math> || mit den absoluten Resten <math>\text{mod }\pi</math>
|-
|style="text-align:left;width:7em"| des Arguments ||style="width:1em"| || <math>|\arg(\mathrm i)| = \frac{\pi}2 </math> ||style="width:3em"| <math>></math> || <math>\biggl|\arg\frac{\sqrt 3 -\mathrm i }2 \biggr| = \frac{\pi}6 </math> ||style="width:3em"| <math>\equiv</math> || <math>\frac{\pi}6 -\pi = \arg\frac{-\sqrt 3 -\mathrm i }2 \text{ mod }\pi , </math>
|}<br />weil die mittlere Wurzel <math>\frac{\sqrt 3 -\mathrm i }2 </math> bei dem gleichen absoluten Rest <math>\text{mod }\pi</math> einen positiven Realteil hat.
Außerdem bleiben bei dieser Definition [[#Die Wurzelgesetze|die Wurzelgesetze]] für viele Wurzelexponenten auch bei komplexen Radikanden erhalten, solange für die so ausgewählten Wurzeln die Summen der Reste modulo <math>\pi</math> der Argumentwerte absolut unterhalb <math>\tfrac{\pi}2</math> bleiben.</ref>
Every [[complex number]] other than 0 has ''n'' different ''n''th roots.
|