Pengguna:Dedhert.Jr/Uji halaman 12: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Dedhert.Jr (bicara | kontrib)
Dedhert.Jr (bicara | kontrib)
Tidak ada ringkasan suntingan
Baris 13:
 
{{div col|colwidth=22em}}
:{{NumBlk|::|<math>\sin \theta = \frac{a}{h} </math>|{{EquationRef|1.1}}}}
:{{NumBlk|::|<math>\cos \theta = \frac{b}{h} </math>|{{EquationRef|1.2}}}}
{{div col end}}
 
Baris 20:
Secara geometri, tangen pada <math>\theta</math> sama dengan rasio sisi depan dengan sisi samping. Kita rumuskan secara matematis, yaitu:
 
:{{NumBlk|::|<math>\tan \theta = \frac{a}{b}</math>|{{EquationRef|1.3}}}}
 
Fungsi tangen juga merupakan rasio fungsi trigonometri sinus dan kosinus. Untuk membuktikannya, cukup menggunakan rumus di atas dan mengeksploitasinya dengan memakai sifat-sifat pembatalan aljabar.
 
:{{NumBlk|::|<math>\tan \theta = \frac{a}{b} = \frac{\frac{a}{h}}{\frac{b}{h}} = \frac{\sin \theta}{\cos \theta}</math>|{{EquationRef|1.4}}}}
 
==== [[Kosekan]], [[sekan]], dan [[kotangen]] ====
Fungsi [[kosekan]], [[sekan]], dan [[kotangen]] merupakan invers perkalian dari [[sinus (trigonometri)|sinus]], [[kosinus]], dan [[tangen]]. Ketiganya dirumuskan sebagai
{{div col|colwidth=19em}}
:{{NumBlk|::|<math> \csc \theta = \frac{1}{\sin \theta} = \frac{1}{\frac{a}{h}} = \frac{h}{a} </math>|{{EquationRef|1.5}}}}
:{{NumBlk|::|<math> \sec \theta = \frac{1}{\cos \theta} = \frac{1}{\frac{b}{h}} = \frac{h}{b} </math>|{{EquationRef|1.6}}}}
:{{NumBlk|::|<math> \cot \theta = \frac{1}{\tan \theta} = \frac{1}{\frac{\sin \theta}{\cos \theta}} = \frac{\cos \theta}{\sin \theta} </math>|{{EquationRef|1.7}}}}
{{div col end}}
 
== Identitas Pythagoras ==
Identitas Pythagoras merupakan turunan dari teorema Pythagoras, yang melibatkan fungsi trigonometri. Dasar-dasr identitas Pythagoras ada tiga, yaitu:
 
== Jumlah dan selisih sudut ==