Kromosom: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
InternetArchiveBot (bicara | kontrib)
Rescuing 1 sources and tagging 0 as dead.) #IABot (v2.0.8.6
k ~ref
Baris 41:
Prokariota tidak memiliki inti. Oleh karenanya, DNA mereka diatur menjadi struktur yang disebut [[nukleoid]].<ref>{{Cite journal|date=October 2005|title=The bacterial nucleoid: a highly organized and dynamic structure|journal=Journal of Cellular Biochemistry|volume=96|issue=3|pages=506–21|doi=10.1002/jcb.20519|pmid=15988757|vauthors=Thanbichler M, Wang SC, Shapiro L}}</ref><ref name="pmid24158908">{{Cite journal|date=November 2013|title=High-resolution mapping of the spatial organization of a bacterial chromosome|journal=Science|volume=342|issue=6159|pages=731–4|bibcode=2013Sci...342..731L|doi=10.1126/science.1242059|pmc=3927313|pmid=24158908|vauthors=Le TB, Imakaev MV, Mirny LA, Laub MT}}</ref> Nukleoid merupakan struktur khusus yang menempati area tertentu dalam sel bakteri. Struktur ini bersifat dinamis serta dipelihara dan dimodel ulang oleh tindakan berbagai protein seperti histon, yang berasosiasi dengan kromosom bakteri.<ref>{{Cite journal|date=December 1998|title=Diversity of prokaryotic chromosomal proteins and the origin of the nucleosome|journal=Cellular and Molecular Life Sciences|volume=54|issue=12|pages=1350–64|doi=10.1007/s000180050259|pmid=9893710|vauthors=Sandman K, Pereira SL, Reeve JN}}</ref> Pada [[arkea]], DNA dalam kromosom bahkan lebih terorganisir; DNA mereka dikemas dalam struktur yang mirip dengan nukleosom pada eukariota.<ref>{{Cite journal|date=March 2000|title=Structure and functional relationships of archaeal and eukaryal histones and nucleosomes|journal=Archives of Microbiology|volume=173|issue=3|pages=165–9|doi=10.1007/s002039900122|pmid=10763747|vauthors=Sandman K, Reeve JN}}</ref><ref>{{Cite journal|date=November 1997|title=Archaeal nucleosomes|journal=Proceedings of the National Academy of Sciences of the United States of America|volume=94|issue=23|pages=12633–7|bibcode=1997PNAS...9412633P|doi=10.1073/pnas.94.23.12633|pmc=25063|pmid=9356501|vauthors=Pereira SL, Grayling RA, Lurz R, Reeve JN}}</ref>
 
Bakteri tertentu juga mengandung [[plasmid]] atau [[DNA ekstrachromosomal|DNA ekstrakromosomal]] lainnya, yang berupa struktur melingkar di [[sitoplasma]] yang mengandung DNA seluler dan berperan dalam [[transfer gen horizontal]]. <ref name="vlp.mpiwg-berlin.mpg.de2">{{Cite book|last=Schleyden|first=M. J.|year=1847|url=http://vlp.mpiwg-berlin.mpg.de/library/data/lit28715?|title=Microscopical researches into the accordance in the structure and growth of animals and plants}}</ref> Pada prokariota (lihat [[nukleoid]]) dan virus,<ref name="sciencedirect.com">{{Cite journal|date=April 2000|title=Structures of virus and virus-like particles|journal=Current Opinion in Structural Biology|volume=10|issue=2|pages=229–35|doi=10.1016/S0959-440X(00)00073-7|pmid=10753814|vauthors=Johnson JE, Chiu W}}</ref> DNA-nya sering kali dikemas dengan padat dan teratur; dalam kasus [[arkea]], oleh homolog histon eukariotik, dan dalam kasus bakteri, oleh protein [[Protein penyusun nukleoid seperti histon|mirip histon]]. Kromosom bakteri cenderung terikat pada [[Membran sel|membran plasma]] bakteri. Dalam penerapan biologi molekuler, hal ini memungkinkan isolasi kromosom bakteri dari DNA plasmid. Seperti DNA eukariota, kromosom prokariota dan plasmid umumnya bersifat [[Superkoil DNA|superkoil]] (sangat menggulung). Pertama-tama, DNA harus diubah ke keadaan terurai untuk mengakses [[Transkripsi (genetik)|transkripsi]], regulasi, dan [[Replikasi DNA|replikasi]].
 
== Eukariota ==
Baris 280:
Teknik baru dibutuhkan untuk memecahkan masalah secara definitif: (1) menggunakan sel dalam kultur; (2) menahan [[mitosis]] dalam [[metafase]] dengan larutan [[kolkisina]]; (3) perlakuan awal sel dalam [[Tonisitas|larutan hipotonik]] 0,075 M KCl, yang membengkakkan dan menyebarkan kromosom; (4) menekan preparat pada kaca yang memaksa kromosom menjadi satu bidang; (5) memotong fotomikrograf dan menyusun hasilnya menjadi kariogram yang tak terbantahkan.
 
Perlu waktu hingga 1954 sebelum angka diploid manusia dikonfirmasi sebagai 46.<ref>{{Cite journal|date=1956|title=The chromosome number of man|journal=Hereditas|volume=42|issue=1–2|pages=723–4|doi=10.1111/j.1601-5223.1956.tb03010.x|pmid=345813|vauthors=Tjio JH, Levan A}}</ref><ref>{{Cite journal|date=November 1956|title=The chromosomes of man|journal=Nature|volume=178|issue=4541|pages=1020–3|bibcode=1956Natur.178.1020F|doi=10.1038/1781020a0|pmid=13378517|vauthors=Ford CE, Hamerton JL}}</ref> Dengan mempertimbangkan teknik Winiwarter dan Painter, hasilnya sangat luar biasa. <ref>Hsu T.C. ''Human and mammalian cytogenetics: a historical perspective''. Springer-Verlag, N.Y. p10: "It's amazing that he [Painter] even came close!"</ref> [[Simpanse]], kerabat terdekat manusia modern, memiliki 48 kromosom seperti halnya [[Hominid|kera besar lainnya]]: pada manusia, dua kromosom bergabung untuk membentuk [[Kromosom 2 (manusia)|kromosom 2]].
 
== Penyimpangan ==