Deret (matematika): Perbedaan antara revisi
Konten dihapus Konten ditambahkan
k -iw |
Dedhert.Jr (bicara | kontrib) →Definisi: anchor untuk pengalihan |
||
Baris 31:
Untuk setiap [[barisan]] <math>\{a_n\}</math> [[bilangan rasional]], [[bilangan real]], [[bilangan kompleks]], [[Fungsi (matematika)|fungsi]], dan lain-lain, '''deret''' yang bersangkutan didefinisikan sebagai [[jumlah formal]] tertata
:<math>\sum_{n=0}^{\infty}a_n = a_0 + a_1 + a_2 + \cdots </math>.
{{anchor|Jumlah parsial}}'''Barisan jumlah parsial''' <math>\{S_k\}</math> bersangkutan dengan suatu deret <math display="inline">\sum_{n=0}^\infty a_n</math> didefinisikan bagi setiap <math>k</math> sebagai jumlah Barisan <math>\{a_n\}</math> dari <math>a_0</math> hingga <math>a_k</math>
:<math>S_k = \sum_{n=0}^{k}a_n = a_0 + a_1 + \cdots + a_k.</math>
Berdasarkan definisi, deret <math display="inline">\sum_{n=0}^{\infty} a_n</math> '''konvergen''' menjadi suatu limit <math>L</math> jika dan hanya jika urutan yang bersangkutan dengan jumlah parsial <math>\{S_k\}</math> [[Limit barisan#Definisi formal|konvegen]] ke <math>L</math>. Definisi ini biasanya ditulis sebagai
:<math>L = \sum_{n=0}^{\infty}a_n \Leftrightarrow L = \lim_{k \rightarrow \infty} S_k.</math>
== Deret fungsi ==
{{Main|Deret fungsi}}
|