Pengguna:Dedhert.Jr/Uji halaman 01/12: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Dedhert.Jr (bicara | kontrib)
Tidak ada ringkasan suntingan
Dedhert.Jr (bicara | kontrib)
Baris 13:
Walaupun penggambaran YBC 7289 seringkali disesuaikan dengan bentuk persegi secara diagonal, ketentuan Babilonia yang standar menggambarkan sisi persegi berupa vertikal dan horizontal, dengan nilainya ditulis di atas sisi persegi.{{r|friberg}} Bentuk lonjong yang kecil beserta tulisan yang besar pada lauh tersebut sejenis "lauh tangan", biasanya merupakan karya yang kasar dari seorang murid yang menekan lauh tersebut dengan telapak tangannya.{{r|bs|fr}} Kemungkinan bahwa murid tersebut menyalin nilai seksagesimal akar kuadrat dari 2 dari lauh lain, namun terdapat cara yang berulang dalam menghitung nilai tersebut dapat ditemukan di lauh-lauh Babilonia, seperti BM 96957 dan VAT 6598.{{r|fr}}
 
Lauh tentang matematika ini pertama kali diakuiditemukan oleh [[Otto E. Neugebauer]] dan [[Abraham Sachs]] pada tahun 1945,{{r|fr|ns}} lauh tersebut "memperlihatkan akurasi perhitungan yang paling terkenal yang diperoleh dimana-mana pada semasa dunia kuno", dinyatakan dalam enam digit desimal yang ekuivalen.{{r|bs}} Ada beberapa lauh asal Babilonia yang memuat perhitungan luas [[Heksagon|segienam]] dan [[segitujuh]], yang melibatkan hampiran [[bilangan aljabar]] yang lebih rumit, misalnyasebagai contoh, {{radic|3}}.{{r|fr}} Bilangan aljabar {{radic|3}} juga dapat dipakai dalam pandangan Yunani kuno yang menghitung dimensi dari piramida. Akan tetapi, nilai dengan ketepatan numerik terbesar pada YBC 7289 terlihat lebih jelas bahwa nilai tersebut bukan hanya merupakan pendekatan, melainkan hasil dari cara menghitungnya.{{r|rudman}}
 
Seksagesimal yang sama kira-kira sama dengan {{radic|2}} (yaitu 1;24,51,10) dipakai pada waktu yang cukup lama oleh seorang matematikawan Yunani bernama [[Claudius Ptolemy|Claudius Ptolemaus]] melalui karyanya ''[[Almagest]]''.{{r|neuhist|ped}} Ptolemaus tidak menjelaskan darimana asal hampiran tersebut dan dapat diasumsi bahwa hampiran tersebut terkenal pada semasa hidupnya.{{r|neuhist}}