Aljabar: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Tidak ada ringkasan suntingan Tag: Suntingan perangkat seluler Suntingan peramban seluler Suntingan seluler lanjutan |
k Perbaikan untuk PW:CW (Fokus: Minor/komestika; 1, 48, 64) + genfixes |
||
Baris 1:
[[Berkas:Quadratic formula.svg|jmpl|Rumus [[persamaan kuadrat]] mengungkapkan solusi dari persamaan derajat dua <math>ax^2 + bx +c=0</math> dalam koefisien <math>a, b, c</math>, dimana <math>a</math> bukan nol.]]
'''Aljabar''' (dari [[
Aljabar elementer berbeda dari [[aritmetika]] dalam penggunaan abstraksi, seperti menggunakan huruf untuk mewakili angka-angka yang tidak diketahui atau diperbolehkan untuk mengambil banyak nilai-nilai. Misalnya, dalam <math>x + 2 = 5</math> huruf <math>x</math> tidak diketahui, tetapi hukum inversi dapat digunakan untuk menemukan nilai: <math>x=3</math>. Dalam [[Ekivalensi massa-energi|{{math|1=''E'' = ''mc''{{smallsup|2}}}}]], huruf <math>E</math> dan <math>m</math> adalah variabel, dan huruf <math>c</math> adalah [[Konstanta (matematika)|konstanta]], kecepatan cahaya dalam vakum. Aljabar memberikan metode untuk memecahkan persamaan dan mengekspresikan rumus yang lebih mudah (bagi mereka yang memahami konsepnya) daripada metode konvensional, yaitu menulis semuanya dalam kata-kata.
Baris 36:
=== Sejarah awal aljabar ===
[[Berkas:Image-Al-
Akar aljabar dapat ditelusuri hingga masa Babilonia kuno,<ref>{{Cite book|title=A Concise History of Mathematics|last=Struik|first=Dirk J.|publisher=Dover Publications|year=1987|isbn=0-486-60255-9|location=New York}}</ref> yang mengembangkan sistem aritmetika lanjut untuk melakukan perhitungan menurut gaya [[algoritme]]. Bangsa Babilonia mengembangkan rumus untuk menghitung solusi dari masalah-masalah yang dewasa ini umum diselesaikan dengan [[persamaan linear]], [[persamaan kuadrat]], dan [[persamaan taktentu]]. Sebaliknya, sebagian besar [[matematika Mesir Kuno|orang Mesir]] pada era ini serta [[Matematika Yunani|Yunani]] dan [[matematika Tiongkok|Tiongkok]] pada milenium 1 SM biasanya menyelesaikan persamaan tersebut dengan metode geometris, seperti yang dijelaskan dalam ''[[Papirus Matematika Rhind]]'', ''[[Elemen Euklides]]'', dan ''[[Sembilan Bab mengenai Seni Matematika]]''. Karya geometris dari Yunani, seperti yang ditulis dalam ''Elemen'', menyediakan kerangka kerja untuk perumuman rumus melampaui solusi dari soal tertentu menjadi sistem yang lebih umum yang menyatakan dan memecahkan persamaan, meskipun hal ini tidak terealisasi sampai sebelum munculnya [[Matematika Islam abad pertengahan]].<ref>{{harvnb|Boyer|1991}}</ref>
|