Analisis matematis: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Ariyanto (bicara | kontrib)
k Bersih-bersih (via JWB)
NikolasKHF (bicara | kontrib)
k Memperbaiki saltik.
Baris 1:
'''Analisis matematis''' adalah cabang ilmu [[matematika]] yang mencakup teori [[turunan]], [[integral]], [[ukuran (matematika)|ukuran]], [[limit]], [[deret (matematika)|deret]],<ref>Edwin Hewitt and Karl Stromberg, "Real and Abstract Analysis", Springer-Verlag, 1965</ref> dan [[analisis fungsional]]. Teori ini biasanya dipelajari dalam konteks [[bilangan riil]] dan [[bilangan kompleks]] dan [[fungsi (matematika)|fungsi]]. Analisis ini dikembangkan dari [[kalkulus]], yang mencakup konsep dasar dan tehnikteknik analisis. Analisis ini dapat dibedakan dari [[geometri]]. Namun, analisis ini dapat diterapkan di seluruh [[ruang (matematika)|ruang]] objek matematika yang memiliki definisi kedekatan ([[ruang topologi]]) atau jarak tertentu di antara objek ([[ruang metrik]]).
 
== Sejarah ==
 
Analisis matematis sudah ada sejak awal zaman matematika Yunani kuno. Sebagai contoh, suatu jumlah geometris yang terbatas tersirat dalam [[Paradoks Zeno|paradoks]] [[Zeno dari Elea|Zeno]].<ref name="Stillwell Infinite Series Early Results">{{cite book|last=Stillwell|authorlink=John Stillwell|title=|year=2004|chapter=Infinite Series|pages=170|quote=Infinite series were present in Greek mathematics, [...] There is no question that Zeno's paradox of the dichotomy (Section 4.1), for example, concerns the decomposition of the number 1 into the infinite series <sup>1</sup>⁄<sub>2</sub> + <sup>1</sup>⁄<sub>2</sub><sup>2</sup> + <sup>1</sup>⁄<sub>2</sub><sup>3</sup> + <sup>1</sup>⁄<sub>2</sub><sup>4</sup> + ... and that Archimedes found the area of the parabolic segment (Section 4.4) essentially by summing the infinite series 1 + <sup>1</sup>⁄<sub>4</sub> + <sup>1</sup>⁄<sub>4</sub><sup>2</sup> + <sup>1</sup>⁄<sub>4</sub><sup>3</sup> + ... = <sup>4</sup>⁄<sub>3</sub>. Both these examples are special cases of the result we express as summation of a geometric series}}</ref> Menyusul [[Matematika Yunani|matematikawan Yunani]] seperti [[Eudoksos dari Knidos|Eudoxus]] and [[Archimedes]] menjadikannya lebih eksplisit, tetapi tidak formal, menggunakan konsep [[limit]] dan konvergensi saat mereka menggunakan [[metode penghabis]] untuk menghitung luas bangun datar dan volume bangun ruang.<ref>(Smith, 1958)</ref> Di [[India]], [[matematikawan]] abad ke-12 [[Bhāskara II]] memberi contoh tentang [[turunan]] dan menggunakan konsep seperti yang sekarang dikenal dengan nama [[Teorema Rolle]].
 
Pada abad ke-14, [[Madhava dari Sangamagrama]] mengembangkan [[deret (matematika)|deret tak hingga]], seperti [[deret pangkat]] dan [[Deret Taylor|deret taylor]] sebagai fungsi seperti [[sinus]], [[kosinus]], [[tangen]] dan [[kotangen]]. Disamping pengembangan deret taylor dari [[fungsi trigonometrik]], ia juga mengestimasikan besarnya [[galat]] yang dihasilkan dengan memotong deret dan memberikan perkiraan yang rasional pada sebuah deret tak tak hingga. Pengikutnya di [[mazhab astronomi dan matematika Kerala]] melanjutkan karnyanyakaryanya hingga abad ke-16.
 
Di [[Eropa]], pada akhir abad ke-17, [[Isaac Newton|Newton]] dan [[Gottfried Leibniz|Leibniz]] secara independen mengembangkan [[kalkulus|kalkulus infinitesimal]], yang berkembang, dengan stimulus kerja terapan yang terus berlanjut sampai abad ke-18, menjadi topik analisis seperti [[kalkulus|kalkulus variasi]], [[persamaan diferensial biasa]] dan [[persamaan diferensial parsial]], [[analisis fourier]], dan [[fungsi pembangkit]]. Dalam periode ini, teknik kalkulus digunakan untuk memperkirakan [[matematika diskret|masalah diskret]] melalui pendekatan [[Analisis numeris|numerik]].
 
Pada abad ke-18, [[Leonhard Euler|Euler]] memperkenalkan konsep [[fungsi (matematika)|fungsi matematika]].<ref name="function">{{cite book|last = Dunham|first = William|title = Euler: The Master of Us All|year = 1999|publisher =The Mathematical Association of America|pages = 17}}</ref> Analisis yang sesungguhnya mulai muncul sebagai subjek independen saat [[Bernard Bolzano]] memperkenalkan definisi [[fungsi kontinu|kontinuitas]] pada tahun 1816,<ref>*{{cite book|first=Roger|last=Cooke|authorlink=Roger Cooke|title=The History of Mathematics: A Brief Course|url=https://archive.org/details/historyofmathema0000cook|publisher=Wiley-Interscience|year=1997|isbn=0-471-18082-3|pages=[https://archive.org/details/historyofmathema0000cook/page/379 379]|chapter=Beyond the Calculus|quote=Real analysis began its growth as an independent subject with the introduction of the modern definition of continuity in 1816 by the Czech mathematician Bernard Bolzano (1781–1848)}}</ref> tetapi hasil kerjanya tidak dikenal luas sampai tahun 1870. Pada 1821, [[Augustin Louis Cauchy|Cauchy]] mulai menempatkan kalkulus pada landasan yang kuat dengan menolak prinsip [[aljabar|aljabar umum]] yang secara luas digunakan dalam karya sebelumnya, terutama oleh Euler. Sebaliknya, Cauchy merumuskan kalkulus dalam bentuk ide geometris dan [[infinitesimal]]. Dengan demikian, apa yang ia definisikan sebagai kontinuitas memerlukan suatu perubahan kecil dalam "x" sesuai dengan perubahan kecil dalam "y". Ia juga memperkenalkan konsep [[Urutan Cauchy|urutan cauchy]], dan memulai teori formal [[analisis kompleks]]. [[Siméon Denis Poisson|Poisson]], [[Joseph Liouville|Liouville]], [[Jean Baptiste Joseph Fourier|Fourier]] dan lainnya mempelajari persamaan diferensial parsial dan [[Analisis Fourier|analisis harmonik]]. Kontribusi para matematikawan ini termasuk juga [[Karl Weierstrass|Weierstrass]], mengembangkan pendekatan [[definisi limit (ε, δ)]] membuka babak baru bidang analisis matematis modern.
Baris 38:
 
=== Analisis klasik ===
Analisis klasik biasanya dipahami sebagai suatu analisis yang tidak menggunakan teknik analisis fungsional, serta menggunakan metode yang lebih tradisional. Studi tentang [[persamaan diferensial]] sekarang berbagi dengan bidang lain seperti [[teori sistem dinamis]], meskipun overlappingberirisan dengan analisis konvensional masih cukup besar.
 
=== Aplikasi teknik analisis ===