Pembagian: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
InternetArchiveBot (bicara | kontrib)
Add 1 book for Wikipedia:Pemastian (20221209)) #IABot (v2.0.9.2) (GreenC bot
Dewinta88 (bicara | kontrib)
Fitur saranan suntingan: 3 pranala ditambahkan.
Baris 74:
 
===Dengan komputer atau dengan bantuan komputer===
Komputer modern menghitung pembagian dengan metode yang lebih cepat daripada pembagian panjang, dengan yang lebih efisien mengandalkan teknik perkiraan dari [[analisis numerik]]. Untuk [[pembagian dengan sisa]], lihat [[algoritma pembagian]].
 
Dalam [[aritmetika modular]] (modulo bilangan prima) dan untuk [[bilangan real]], bilangan bukan nol memiliki [[invers perkalian modular|invers perkalian]]. Dalam kasus ini, pembagian dengan {{mvar|x}} dapat dihitung sebagai darab dengan perkalian invers {{mvar|x}}. Pendekatan ini sering dikaitkan dengan metode yang lebih cepat dalam aritmetika komputer.
Baris 132:
 
=== Aljabar abstrak ===
Dalam [[aljabar abstrak]], diberikan [[Magma (aljabar)|magma]] dengan [[operasi biner]] (yang secara nominal dapat disebut perkalian), [[pembagian kiri]] dari ''b'' oleh ''a'' (ditulis {{nowrap|''a'' \ ''b''}}) biasanya didefinisikan sebagai solusi ''x'' untuk persamaan {{nowrap|1=''a'' ∗ ''x'' = ''b''}}, jika ini adalah keujudan dan unik. Demikian pula, [[pembagian kanan]] dari ''b'' oleh ''a'' (ditulis {{nowrap|''b'' / ''a''}}) adalah solusi ''y'' untuk persamaan {{nowrap|1=''y'' ∗ ''a'' = ''b''}}. Pembagian dalam pengertian ini tidak memerlukan ∗ untuk memiliki sifat tertentu (seperti komutatifitas, asosiatifitas, atau [[elemen identitas]]).
 
"Pembagian" dalam arti "pembatalan" apabila dilakukan di magma oleh elemen dengan [[sifat pembatalan]]. Contohnya termasuk [[Matriks (matematika)|matriks]] aljabar dan [[kuaternion]] aljabar. Sebuah [[grup semu]] adalah struktur dimana pembagian selalu mungkin, bahkan tanpa elemen identitas dan karenanya invers. Dalam [[ranah integral]], dimana tidak setiap elemen perlu memiliki invers, ''pembagian'' oleh elemen pembatalan ''a'' masih dilakukan pada elemen bentuk ''ab'' atau ''ca'' dengan pembatalan kiri atau kanan, masing-masing. Jika sebuah [[gelanggang (matematika)|gelanggang]] hingga dan setiap elemen bukan nol adalah kanselatif, maka dengan penerapan [[prinsip rumah burung]], setiap elemen bukan nol dari gelanggang invers, dan "pembagian" oleh elemen bukan nol adalah mungkin. Untuk mempelajari tentang ''aljabar'' (dalam pengertian teknis) memiliki operasi pembagian, lihat halaman di [[aljabar pembagian]]. Khususnya [[periodisitas Bott]] apabila digunakan untuk menunjukkan bahwa [[bilangan real|real]] [[aljabar pembagian norma]] [[isomorfik]] ke salah satu bilangan real '''R''', [[bilangan kompleks]] '''C''', [[kuaternion]] '''H''', atau [[oktonion]] '''O'''.