Aritmetika modular: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
k clean up
Dwirahil (bicara | kontrib)
Fitur saranan suntingan: 1 pranala ditambahkan.
Tag: VisualEditor Suntingan perangkat seluler Suntingan peramban seluler Tugas pengguna baru Disarankan: tambahkan pranala
Baris 150:
Untuk sebarang nilai <math>a, b, c</math>. Lebih lanjut, operasi penjumlahan dan perkalian tetap berlaku pada relasi kekongruen modulo <math>n</math>. Jika <math>a_1, b_1, a_2, b_2 </math> memenuhi <math>a_1 \equiv b_1</math> dan <math>a_2 \equiv b_2</math>, maka <math>a_1 + a_2 \equiv b_1 + b_2</math> dan <math>a_1a_2 \equiv b_1b_2</math>. Hal ini juga menyebabkan beberapa operasi lain tetap berlaku:
* Penjumlahan skalar: <math>a+k \equiv b+k</math> dan <math>a-k \equiv b-k</math>
*[[Perkalian skalar]]: <math>ak \equiv bk</math>
* Perpangkatan: <math>a^k \equiv b^k</math>, untuk bilangan bulat non-negatif <math>k</math>
* Untuk polinomial <math>p(x)</math> dengan koefisien-koefisien bilangan bulat, berlaku <math>p(a) \equiv p(b)</math>
Baris 188:
Dalam kriptografi, aritmatika modular secara langsung mendukung sistem [[Kriptografi kunci publik|kunci publik]] seperti [[RSA (algoritme)|RSA]] dan [[Pertukaran kunci Diffie–Hellman|Diffie–Hellman]], dan menyediakan [[finite field]] yang mendasari [[kurva elips]], dan digunakan dalam berbagai [[algoritma kunci simetris]] termasuk [[Standar Enkripsi Lanjutan]] (AES), [[Algoritma Enkripsi Data Internasional]] (IDEA), dan [[RC4]]. RSA dan Diffie–Hellman menggunakan [[eksponen modular]].
 
Dalam aljabar komputer, aritmatika modular biasanya digunakan untuk membatasi ukuran koefisien integer dalam penghitungan dan data menengah. Digunakan dalam [[faktorisasi polinomial]], masalah di mana semua algoritma efisien yang diketahui menggunakan aritmatika modular. Digunakan oleh implementasi yang paling efisien dari algoritma [[pembagi persekutuan terbesar polinomial]], eksak [[aljabar linear]] dan [[basis Gröbner]] di atas bilangan bulat dan [[bilangan rasional]]. Seperti yang diposting di [[Fidonet]] pada tahun 1980-an dan diarsipkan di [[Rosetta Code]], aritmatika modular digunakan untuk menyangkal [[konjektur jumlah pangkat Euler]] pada [[Sinclair QL]] [[mikrokomputer]] menggunakan hanya seperempat dari presisi integer yang digunakan oleh [[CDC 6600]] [[superkomputer]] untuk membantahnya dua dekade sebelumnya melalui [[pencarian brute force]].<ref>{{Cite web|title=Euler's sum of powers conjecture|url=https://rosettacode.org/wiki/Euler%27s_sum_of_powers_conjecture#QL_SuperBASIC|access-date=2020-11-11|website=rosettacode.org|language=en}}</ref>
 
Dalam ilmu komputer, aritmatika modular sering diterapkan dalam [[operasi bitwise]] dan operasi lain yang melibatkan lebar tetap, [[struktur data]] siklik. [[Operasi modulo]], seperti yang diterapkan di banyak [[bahasa pemrograman]] dan [[kalkulator]], adalah aplikasi aritmetika modular yang sering digunakan dalam konteks. Operator logika [[XOR]] menjumlahkan 2 bit, modulo 2.