Bilangan prima Wolstenholme: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Dedhert.Jr (bicara | kontrib) infobox |
Dedhert.Jr (bicara | kontrib) definisi |
||
Baris 16:
Dua bilangan prima Wolstenholme yang diketahui hanyalah 16843 dan 2124679 {{OEIS|A088164}}. Tiada bilangan prima Wolstenholme yang lebih kecil daripada 10<sup>9</sup>.<ref>{{MathWorld|urlname=WolstenholmePrime|title=Wolstenholme prime|mode=cs2}}</ref>
==Definisi==
{{unsolved|matematika|Adakah bilangan prima Wolstenholme selain 16843 dan 2124679?}}
Bilangan prima Wolstenholme dapat didefinisikan sebagai bilangan prima <math> p > 7 </math> yang memenuhi [[relasi kekongruenan|kekongruenan]]:<math display="block">{2p-1 \choose p-1} \equiv 1 \pmod{p^4}.</math>
Disini, ekspresi di ruas kiri melambangkan [[koefisien binomial]].<ref>{{citation|url = http://www.johndcook.com/binomial_coefficients.html | title = Binomial coefficients | first = J. D. | last = Cook | access-date = 21 December 2010}}</ref>
Sebagai perbandingan, [[teorema Wolstenholme]] menyatakan bahwa untuk setiap bilangan prima <math> p > 3 </math>, maka berlaku kekongruenan:
<math display="block">{2p-1 \choose p-1} \equiv 1 \pmod{p^3}.</math>
Bilangan prima Wolstenholme didefinisikan sebagai bilangan prima <math> p </math> yang membagi pembilang dari [[bilangan Bernoulli]] <math> B_3 </math>.<ref>{{harvnb|Clarke|Jones|2004|p=553}}; {{harvnb|McIntosh|1995|p=387}}; {{harvnb|Zhao|2008|p=25}}.</ref> Karena itu, bilangan prima Wolstenholme membentuk subhimpunan dari [[bilangan prima tak beraturan]]. Bilangan prima Wolstenholme merupakan bilangan prima <math> p </math> sehingga <math> (p,p - 3) </math> merupakan [[Bilangan prima beraturan#Pasangan tak beraturan|pasangan tak beraturan]].<ref>{{harvnb|Johnson|1975|p=114}}; {{harvnb|Buhler|Crandall|Ernvall|Metsänkylä|1993|p=152}}.</ref>
Bilangan prima Wolstenholme adalah bilangan prima <math> p </math> sehingga
<math display="block">H_{p - 1} \equiv 0 \pmod{p^3}.</math>
Ini berarti, pembilang dari [[bilangan harmonik]] <math>H_{p-1}</math> yang dinyatakan dalam suku terkecil dapat dibagi oleh <math> p^3 </math>.{{sfn|Zhao|2007|p=18}}
== Catatan kaki ==
Baris 22 ⟶ 35:
== Referensi ==
{{refbegin|30em}}
* {{Citation | last1=Buhler | first1=J. | last2=Crandall | first2=R. | last3=Ernvall | first3=R. | last4=Metsänkylä | first4=T. | title=Irregular Primes and Cyclotomic Invariants to Four Million | year=1993 | journal=[[Mathematics of Computation]] | volume=61 | issue=203 | pages=151–153 | url=http://www.ams.org/journals/mcom/1993-61-203/S0025-5718-1993-1197511-5/S0025-5718-1993-1197511-5.pdf | doi=10.2307/2152942| jstor=2152942 | bibcode=1993MaCom..61..151B | doi-access=free }}
* {{Citation | last1=Clarke | first1=F. | last2=Jones | first2=C. | title=A Congruence for Factorials | year=2004 | journal=Bulletin of the London Mathematical Society | volume=36 | pages=553–558 | url=http://blms.oxfordjournals.org/content/36/4/553.full.pdf | doi=10.1112/S0024609304003194 | issue=4}} {{webarchive|url=https://www.webcitation.org/5vRE6GbVK|date=2 Januari 2011}}
* {{Citation | last1=Johnson | first1=W. | title=Irregular Primes and Cyclotomic Invariants | year=1975 | journal=[[Mathematics of Computation]] | volume=29 | issue=129 | pages=113–120 | url=http://www.ams.org/journals/mcom/1975-29-129/S0025-5718-1975-0376606-9/S0025-5718-1975-0376606-9.pdf | doi=10.2307/2005468| jstor=2005468 | doi-access=free }} {{webarchive|url=https://www.webcitation.org/5v79AhVZp|date=20 December 2010}}
* {{Citation | last1=McIntosh | first1=R. J. | title=On the converse of Wolstenholme's Theorem | year=1995 | journal=[[Acta Arithmetica]] | volume=71 | issue=4 | pages=381–389 | url=http://matwbn.icm.edu.pl/ksiazki/aa/aa71/aa7144.pdf| doi=10.4064/aa-71-4-381-389 | doi-access=free }} {{webarchive|url=https://www.webcitation.org/5u5TTjyoj|date=8 November 2010}}
* {{Citation | last1=Zhao | first1=J. | title=Bernoulli numbers, Wolstenholme's theorem, and p<sup>5</sup> variations of Lucas' theorem | year=2007 | journal=Journal of Number Theory | volume=123 | pages=18–26 | doi=10.1016/j.jnt.2006.05.005 | s2cid=937685 | url=http://home.eckerd.edu/~zhaoj/research/ZhaoJNTBern.pdf| doi-access=free }}{{webarchive|url=https://www.webcitation.org/5uBfrPYe8|date=12 November 2010}}
* {{Citation | last1=Zhao | first1=J. | title=Wolstenholme Type Theorem for Multiple Harmonic Sums | year=2008 | journal=International Journal of Number Theory | volume=4 | issue=1 | pages=73–106 | url=http://home.eckerd.edu/~zhaoj/research/ZhaoIJNT.pdf | doi=10.1142/s1793042108001146}} {{webarchive|url=https://www.webcitation.org/5uXu6BHu7|date=27 November 2010}}
{{refend}}
|