Sistem dinamis: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
InternetArchiveBot (bicara | kontrib)
Rescuing 1 sources and tagging 0 as dead.) #IABot (v2.0.9.5
InternetArchiveBot (bicara | kontrib)
Add 3 books for Wikipedia:Pemastian (20231209)) #IABot (v2.0.9.5) (GreenC bot
Baris 5:
Dalam [[matematika]], '''sistem dinamis''' adalah sebuah sistem dimana sebuah [[fungsi (matematika)|fungsi]] mendeskripsikan ketergantungan waktu dari sebuah titik dalam sebuah [[manifold|ruang geometri]]. Contoh-contohnya meliputi [[model matematika]] yang mendeskripsikan gerak [[pendulum]] jam, [[dinamika fluida|aliran air dalam sebuah pipa]], dan [[dinamika populasi|jumlah ikan setiap musim semi di danau]].
 
Pada waktu manapun yang diberikan, sistem dinamis memiliki [[keadaan (kontrol)|keadaan]] yang diberikan oleh serangkaian [[angkata nyata]] (sebuah [[ruang vektor|cektor]]) yang dapat diwakili oleh sebuah [[Poin (geometri)|poin]] dalam sebuah [[ruang keadaan]] (sebuah [[manifold]] geometri). ''Aturan evolusi'' dari sistem dinamis adalah sebuah fungsi yang menyebut apakah keadaan-keadaan mendatang diikuti dari keadaan saat ini. Seringkali, fungsi tersebut bersifat [[sistem deterministik (matematika)|deterministik]], yang selama waktu yang diberikan hanya terdiri dari satu keadaan mendatang dari keadaan saat ini.<ref>{{cite book |last=Strogatz |first=S. H. |year=2001 |title=Nonlinear Dynamics and Chaos: with Applications to Physics, Biology and Chemistry |location= |publisher=Perseus }}</ref><ref>{{cite book |first=A. |last=Katok |first2=B. |last2=Hasselblatt |title=Introduction to the Modern Theory of Dynamical Systems |url=https://archive.org/details/introductiontomo0000kato |location=Cambridge |publisher=Cambridge University Press |year=1995 |isbn=0-521-34187-6 }}</ref> Namun, beberapa sistem bersifat [[sistem stokastik|stokastik]], dalam peristiwa-peristiwa acak yang juga berdampak pada evolusi keadaan yang beragam.
 
Dalam [[fisika]], '''sistem dinamis''' dideskripsikan sebagai sebuah "partikel atau kelompok dari partikel yang keadaannya beragam sepanjang waktu dan kemudian menunjukkan persamaan diferensial yang melibatkan derivatif waktu."<ref>{{cite web|title=Nature|url=http://www.nature.com/subjects/dynamical-systems|publisher=Springer Nature|accessdate= 17 February 2017}}</ref> Dalam rangkaian untuk membuat sebuah prediksi tentang perilaku mendatang dari sistem tersebut, sebuah solusi analitik dari persamaan semacam itu atau integrasi mereka sepanjang waktu melalui simulasi komputer direalisasikan.
Baris 161:
* {{cite book | author=[[Steven Strogatz|Steven H. Strogatz]] | title= Nonlinear dynamics and chaos: with applications to physics, biology chemistry and engineering | publisher= Addison Wesley | year= 1994|isbn = 0-201-54344-3 }}
* {{cite book| last = Teschl| given = Gerald|authorlink=Gerald Teschl| title = Ordinary Differential Equations and Dynamical Systems| publisher=[[American Mathematical Society]]| place = [[Providence, Rhode Island|Providence]]| year = 2012| isbn= 978-0-8218-8328-0| url = http://www.mat.univie.ac.at/~gerald/ftp/book-ode/}}
* {{cite book | author= Stephen Wiggins | title= Introduction to Applied Dynamical Systems and Chaos | url= https://archive.org/details/springer_10.1007-b97481 | publisher= Springer | year= 2003 | isbn= 0-387-00177-8 }}
 
Popularisasi:
* {{cite book | author=[[Florin Diacu]] and [[Philip Holmes]] | title= Celestial Encounters | url=https://archive.org/details/celestialencount0000unse | publisher= Princeton | year= 1996 | isbn= 0-691-02743-9}}
* {{cite book | author=[[James Gleick]] | title= [[Chaos: Making a New Science]] | publisher= Penguin | year= 1988 | isbn= 0-14-009250-1}}
* {{cite book | authorlink=Ivar Ekeland | author=Ivar Ekeland | title= Mathematics and the Unexpected (Paperback) | url=https://archive.org/details/mathematicsunexp0000ekel | publisher= University Of Chicago Press | year= 1990 | isbn= 0-226-19990-8}}