Jaringan Syaraf Tiruan Berbasis Wilayah: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Tidak ada ringkasan suntingan
Tag: Suntingan perangkat seluler Suntingan peramban seluler Suntingan seluler lanjutan
Tag: Suntingan perangkat seluler Suntingan peramban seluler Suntingan seluler lanjutan
Baris 2:
'''Jaringan Syaraf Tiruan Berbasis Wilayah''' ({{Lang-en|Region-based Convolutional Neural Networks}}) adalah keluarga model pembelajaran mesin untuk [[visi komputer]] dan khususnya [[deteksi objek]]
 
== Mask R-CNNSejarah ==
Mask R-CNN jaringan saraf dalam dunia machine learning atau computer vision yang dirancang untuk memecahkan masalah segmentasi instance. Dengan kata lain, ini dapat memisahkan objek-objek berbeda dalam suatu gambar atau video. Anda memberikan gambar, dan itu memberikan kotak pembatas objek, kelas, dan masker. Jadi, sekarang pertanyaannya adalah apa itu segmentasi instance?
 
The original goal of R-CNN was to take an input image and produce a set of bounding boxes as output, where each bounding box contains an object and also the category (e.g. car or pedestrian) of the object. More recently, R-CNN has been extended to perform other computer vision tasks. The following covers some of the versions of R-CNN that have been developed.
Segmentasi instance adalah tugas mengidentifikasi garis tepi objek pada tingkat piksel. Dibandingkan dengan tugas-tugas computer vision serupa, ini merupakan salah satu tugas visi yang paling sulit. Pertimbangkan tugas-tugas berikut:
 
* November 2013: '''R-CNN'''. Given an input image, R-CNN begins by applying a mechanism called Selective Search to extract [[Region of interest|regions of interest]] (ROI), where each ROI is a rectangle that may represent the boundary of an object in image. Depending on the scenario, there may be as many as two thousand ROIs. After that, each ROI is fed through a neural network to produce output features. For each ROI's output features, a collection of [[support-vector machine]] classifiers is used to determine what type of object (if any) is contained within the ROI.<ref>{{Cite news|last=Gandhi|first=Rohith|url=https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e|title=R-CNN, Fast R-CNN, Faster R-CNN, YOLO — Object Detection Algorithms|date=July 9, 2018|work=Towards Data Science|access-date=March 12, 2020}}</ref>
# Segmentasi Semantik: Ini adalah semua piksel balon.
* April 2015: '''Fast R-CNN'''. While the original R-CNN independently computed the neural network features on each of as many as two thousand regions of interest, Fast R-CNN runs the neural network once on the whole image. At the end of the network is a novel method called ROIPooling, which slices out each ROI from the network's output tensor, reshapes it, and classifies it. As in the original R-CNN, the Fast R-CNN uses Selective Search to generate its region proposals.<ref name=":0">{{Cite news|last=Bhatia|first=Richa|url=https://analyticsindiamag.com/what-is-region-of-interest-pooling/|title=What is region of interest pooling?|date=September 10, 2018|work=Analytics India|access-date=March 12, 2020}}</ref>
# Deteksi Objek: Ada 7 balon dalam gambar ini di lokasi-lokasi ini. Kami mulai mempertimbangkan objek-objek yang tumpang tindih.
* June 2015: '''Faster R-CNN'''. While Fast R-CNN used Selective Search to generate ROIs, Faster R-CNN integrates the ROI generation into the neural network itself.<ref name=":0" />
# Segmentasi Instance: Ada 7 balon di lokasi-lokasi ini, dan ini adalah piksel-piksel yang dimiliki oleh masing-masingnya.
* March 2017: '''Mask R-CNN'''. While previous versions of R-CNN focused on object detection, Mask R-CNN adds instance segmentation. Mask R-CNN also replaced ROIPooling with a new method called ROIAlign, which can represent fractions of a pixel.<ref>{{Cite news|last=Farooq|first=Umer|url=https://medium.com/@umerfarooq_26378/from-r-cnn-to-mask-r-cnn-d6367b196cfd|title=From R-CNN to Mask R-CNN|date=February 15, 2018|work=Medium|access-date=March 12, 2020}}</ref><ref>{{Cite news|last=Weng|first=Lilian|url=https://lilianweng.github.io/lil-log/2017/12/31/object-recognition-for-dummies-part-3.html|title=Object Detection for Dummies Part 3: R-CNN Family|date=December 31, 2017|work=Lil'Log|access-date=March 12, 2020}}</ref>
 
* June 2019: '''Mesh R-CNN''' adds the ability to generate a 3D mesh from a 2D image.<ref>{{Cite news|last=Wiggers|first=Kyle|url=https://venturebeat.com/2019/10/29/facebook-highlights-ai-that-converts-2d-objects-into-3d-shapes/|title=Facebook highlights AI that converts 2D objects into 3D shapes|date=October 29, 2019|work=VentureBeat|access-date=March 12, 2020}}</ref>
 
Mask R-CNN (jaringan saraf konvolusional regional) adalah kerangka kerja dua tahap: tahap pertama memindai gambar dan menghasilkan proposal (area yang kemungkinan berisi objek). Dan tahap kedua mengklasifikasikan proposal dan menghasilkan kotak pembatas dan masker. Kedua tahap terhubung ke struktur backbone.
[[Berkas:Mask R-CNN.webp|jmpl]]
 
== Apa itu Backbone? ==