Konten dihapus Konten ditambahkan
k Mengembalikan suntingan oleh 103.188.173.22 (bicara) ke revisi terakhir oleh WikiNgab
Tag: Pengembalian
kTidak ada ringkasan suntingan
Baris 1:
{{untuk|singkatan pusat perbelanjaan di Jakarta Pusat|Plaza Indonesia}}
[[Berkas:Pi-CM.svg|ka|jmpl|200px|Simbol '''Pi''', π.]]{{Pi (konstanta matematika)}}
Bilangan '''{{pi}}''' (kadang{{IPAc-kadangen|p|aɪ}}; ditulisdieja "'''pi'''") adalah sebuah [[konstanta matematika]] dalamyang merepresentasikan [[matematikarasio]] yangantara merupakan perbandingan[[Keliling lingkaran|keliling]] sebuah [[lingkaran]] dengan [[diameterDiameter|diameternya]]nya. Nilai {{pi}} dalamsecara 20 tempat desimalmendekati adalah 3,1415926535897932384614159. BanyakSebagai rumusbilangan dalamyang [[matematika]]istimewa, sains,{{pi}} danbanyak [[teknik]]digunakan yangdalam menggunakanberbagai π,bidang yangilmu menjadikannya salah satu dariseperti [[konstanta matematika]] yangdan penting[[fisika]]. {{pi}} adalahdikenal sebagai [[bilangan irasional]], yangartinya berartibilangan nilai πini tidak dapat dinyatakan dalamsecara pembagianpersis sebagai perbandingan dua [[bilangan bulat]]. (biasanyaMeskipun pecahandemikian, 22/7bilangan digunakanpecahan sebagaisederhana nilai pendekatanseperti <math>\tfrac{22}{pi7}};</math> namunsering sebenarnya[[Perkiraan tiadaπ|digunakan satupun pecahan yang dapatuntuk mewakilimendekati nilai yangπ]]. sama persis denganKeunikan {{pi}}.) Olehjuga karenaterletak itu pula,pada [[representasiRepresentasi desimal|desimalnya]] {{pi}} tidakyang akantak pernah berakhir dan tidak[[Desimal akan pernahberulang|tidak memiliki pola angka tertentu yang permanenberulang]]. Digit-digitSelain desimalitu, {{pi}} tampaknyamerupakan terdistribusikan[[bilangan secara acak,transenden]]. walaupun sampai sekarang halHal ini masihberarti belum dibuktikan.bahwa {{pi}} adalahtidak dapat menjadi solusi dari [[bilangan transendenpersamaan]]tal, yaknipolinomial apapun dengan koefisien bilangan yangbulat. bukanSifat akartransendental dariini polinom-polinommenjelaskan bukanmengapa nolmasalah manapunkuno yang[[Mempersegikan memilikilingkaran|mengkuadratkan koefisienlingkaran]] menggunakan [[Lukisan jangka dan mistar|jangka dan penggaris]] tidak mungkin rasionaldiselesaikan. TransendensiThe bilangandecimal digits of {{pi}} menjadiappear dalilto bahwabe [[Masalah klasikRandom matematika kunosequence|teka-tekirandomly matematika kunodistributed]],{{efn|In particular, {{pi}} is conjectured to be a untuk[[Mempersegikannormal lingkaran|mengkuadratkan lingkarannumber]], denganwhich hanyaimplies [[Lukisana jangkaspecific dankind mistar|menggunakanof jangkastatistical danrandomness penggarison its digits in all bases.}} but no proof of this [[conjecture]] tidakhas mungkin dapatbeen dipecahkanfound.
 
Sejak ribuan tahun silam, para matematikawan dari berbagai peradaban telah mempelajari {{pi}}. Bangsa [[Egyptian mathematics|Mesir]] dan [[Babylonian mathematics|Babilonia kuno]], {{pi}} digunakan dalam perhitungan praktis. Sekitar tahun 250 SM, [[Archimedes]] dari [[Greek mathematics|Yunani]] memperkenalkan algoritma untuk menghitung nilai {{pi}} dengan presisi tinggi. Pada abad ke-5 M, [[Chinese mathematics|matematikawan Tiongkok]] berhasil mendekati nilai {{pi}} hingga tujuh angka desimal, sementara [[Indian mathematics|matematikawan India]] mencapai lima angka desimal, keduanya menggunakan metode geometris. Ribuan tahun kemudian, penemuan [[Series (mathematics)|deret tak hingga]] untuk menghitung {{pi}} membuka babak baru dalam pemahaman nilai ini.{{sfn|Andrews|Askey|Roy|1999|p=59}}<ref>{{Cite journal|last=Gupta|first=R. C.|year=1992|title=On the remainder term in the Madhava–Leibniz's series|journal=Ganita Bharati|volume=14|issue=1–4|pages=68–71}}</ref> Simbol Yunani [[Pi (letter)|π]] pertama kali digunakan oleh [[William Jones (mathematician)|William Jones]] pada tahun 1706.<ref name="jones">{{cite book|last=Jones|first=William|year=1706|url=https://archive.org/details/SynopsisPalmariorumMatheseosOrANewIntroductionToTheMathematics/page/n283/|title=Synopsis Palmariorum Matheseos|place=London|publisher=J. Wale|pages=[https://archive.org/details/SynopsisPalmariorumMatheseosOrANewIntroductionToTheMathematics/page/n261/ 243], [https://archive.org/details/SynopsisPalmariorumMatheseosOrANewIntroductionToTheMathematics/page/n283/ 263]|quote=There are various other ways of finding the ''Lengths'', or ''Areas'' of particular ''Curve Lines'' or ''Planes'', which may very much facilitate the Practice; as for instance, in the ''Circle'', the Diameter is to Circumference as 1 to {{br}}<math>
Selama beribu-ribu tahun, matematikawan telah berusaha untuk memperluas pemahaman akan bilangan {{pi}}. Hal ini kadang-kadang dilakukan dengan menghitung nilai bilangan {{pi}} hingga keakurasian yang sangat tinggi. Sebelum abad ke-15, para matematikawan seperti [[Archimedes]] dan [[Liu Hui]] menggunakan teknik-teknik geometris yang didasarkan pada poligon untuk memperkirakan nilai {{pi}}. Mulai abad ke-15, algoritme baru yang didasarkan pada [[deret tak terhingga]] merevolusi perhitungan nilai {{pi}}. Cara ini digunakan oleh berbagai matematikawan seperti [[Madhava dari Sangamagrama]], [[Isaac Newton]], [[Leonhard Euler]], [[Carl Friedrich Gauss]], dan [[Srinivasa Ramanujan]].
\overline{\tfrac{16}5 - \tfrac4{239}}
- \tfrac13\overline{\tfrac{16}{5^3} - \tfrac4{239^3}}
+ \tfrac15\overline{\tfrac{16}{5^5} - \tfrac4{239^5}}
-,\, \&c. =</math>{{br}}{{math|1=3.14159, &''c.'' = ''π''}}. This ''Series'' (among others for the same purpose, and drawn from the same Principle) I receiv'd from the Excellent Analyst, and my much Esteem'd Friend Mr. ''[[John Machin]]''; and by means thereof, ''[[Ludolph van Ceulen|Van Ceulen]]''{{'}}s Number, or that in Art. 64.38. may be Examin'd with all desireable Ease and Dispatch.|author-link=William Jones (mathematician)|quote-page=263}}
 
Reprinted in {{cite book|last=Smith|first=David Eugene|year=1929|title=A Source Book in Mathematics|publisher=McGraw–Hill|pages=346–347|chapter=William Jones: The First Use of {{mvar|π}} for the Circle Ratio|chapter-url=https://archive.org/details/sourcebookinmath1929smit/page/346/}}</ref>
Pada abad ke-20 dan ke-21, para matematikawan dan ilmuan komputer menemukan pendekatan baru yang apabila digabungkan dengan daya komputasi komputer yang tinggi, mampu memperpanjang representasi desimal {{pi}} sampai dengan lebih 10 triliun (10<sup>13</sup>) digit.<ref name="NW"/> Penerapan bilangan {{pi}} dalam bidang sains pada umumnya tidak memerlukan lebih dari beberapa ratus digit desimal {{pi}} dan bahkan kurang. Motivasi utama penghitungan ini adalah menemukan algoritme yang lebih efisien untuk menghitung rangkaian bilangan panjang sekaligus memecahkan rekor.<ref>{{harvnb|Arndt|Haenel|2006|p=17}}</ref><ref>{{cite journal|first1=David |last1=Bailey |first2=Jonathan |last2=Borwein |first3=Peter |last3=Borwein |first4=Simon |last4=Plouffe |title=The Quest for Pi|url=https://archive.org/details/sim_mathematical-intelligencer_winter-1997_19_1/page/50 |journal=The Mathematical Intelligencer|year=1997|volume=19|issue=1|pages=50–56|doi=10.1007/bf03024340|citeseerx=10.1.1.138.7085}}</ref> Perhitungan ekstensif seperti ini juga digunakan untuk menguji kemampuan [[superkomputer]] dan [[algoritme]] perkalian presisi tinggi. Pada tahun [[1973]], manusia berhasil menemukan 1 juta digit desimal dari π.
 
Penemuan [[kalkulus]] pada abad ke-17 memberikan langkah penting dalam penghitungan bilangan {{pi}} hingga ratusan digit, cukup untuk keperluan ilmiah praktis pada masanya. Namun, pada abad ke-20 dan ke-21, ahli matematika dan [[Ilmu komputer|ilmuwan komputer]] mengembangkan metode baru dengan memanfaatkan peningkatan daya komputasi dan berhasil memperluas representasi desimal {{pi}} hingga triliunan digit.<ref>{{cite web|title=π<sup>e</sup> trillion digits of π|url=http://www.pi2e.ch/|website=pi2e.ch|archive-url=https://web.archive.org/web/20161206063441/http://www.pi2e.ch/|archive-date=6 December 2016|url-status=live}} <!-- – the exact number of digits increases periodically – it should not be included in this article by citing only a [[WP:PRIMARY|primary reference source]]. --></ref><ref>{{Cite web|last=Haruka Iwao|first=Emma|author-link=Emma Haruka Iwao|date=14 March 2019|title=Pi in the sky: Calculating a record-breaking 31.4 trillion digits of Archimedes' constant on Google Cloud|url=https://cloud.google.com/blog/products/compute/calculating-31-4-trillion-digits-of-archimedes-constant-on-google-cloud|website=[[Google Cloud Platform]]|archive-url=https://web.archive.org/web/20191019023120/https://cloud.google.com/blog/products/compute/calculating-31-4-trillion-digits-of-archimedes-constant-on-google-cloud|archive-date=19 October 2019|access-date=12 April 2019|url-status=live}}</ref> Motivasi di balik pencapaian ini melibatkan pengembangan algoritma yang efisien untuk menghitung deret numerik, sekaligus memenuhi ambisi manusia untuk mencetak rekor baru.{{sfn|Arndt|Haenel|2006|p=17}}<ref>{{cite journal|last1=Bailey|first1=David H.|last2=Plouffe|first2=Simon M.|last3=Borwein|first3=Peter B.|last4=Borwein|first4=Jonathan M.|year=1997|title=The quest for PI|journal=[[The Mathematical Intelligencer]]|volume=19|issue=1|pages=50–56|doi=10.1007/BF03024340|issn=0343-6993|citeseerx=10.1.1.138.7085|s2cid=14318695}}</ref> Perhitungan masif ini juga digunakan untuk menguji kinerja [[superkomputer]] dan perangkat keras komputer konsumen.
Karena definisi {{pi}} berhubungan dengan lingkaran, maka pi banyak ditemukan dalam rumus-rumus [[trigonometri]] dan [[geometri]], terutama yang menyangkut lingkaran, elips, dan bola. {{pi}} juga ditemukan pada rumus-rumus bidang ilmu lainnya seperti [[kosmologi]], [[teori bilangan]], [[statistika]], [[fraktal]], [[termodinamika]], [[mekanika]], dan [[elektromagnetisme]]. Keberadaan {{pi}} yang sangat umum menjadikannya sebagai salah satu konstanta matematika yang paling luas dikenal, baik di dalam maupuan di luar kalangan ilmuwan. Hal ini dibuktikan dari beberapa penerbitan buku yang membahas bilangan ini, perayaan [[hari Pi]], dan pemberitaan-pemberitaan yang luas di mana perhitungan digit {{pi}} berhasil memecahkan rekor perhitungan. Beberapa orang bahkan dengan kerasnya berusaha menghafal nilai bilangan {{pi}} dengan rekor 70.030 digit (Suresh Kumar Sharma, India).
 
Sebagai konstanta yang mendasari lingkaran, {{pi}} banyak muncul dalam rumus matematika, fisika, dan teknik, terutama dalam [[trigonometri]] and [[geometri]]. Misalnya, rumus untuk luas lingkaran dan volume bola merupakan aplikasi fundamental. Bilangan ini juga berperan dalam bidang ilmu lain, seperti [[kosmologi]], [[fraktal]], [[termodinamika]], [[mekanika]], dan [[elektromagnetisme]]. Lebih jauh lagi, {{pi}} muncul dalam cabang ilmu yang tampaknya tidak berhubungan dengan geometri, seperti [[teori bilangan]] dan [[statistika]]. Dalam [[Mathematical analysis|analisis matematika]] modern, {{pi}} bahkan dapat didefinisikan tanpa referensi langsung terhadap geometri. {{pi}} adalah salah satu konstanta matematika paling terkenal, baik di dalam maupun di luar komunitas ilmu pengetahuan. Buku-buku yang mengupas tentang bilangan ini banyak diterbitkan, dan penghitungan rekornya sering menjadi berita utama.
 
{{TOC limit|limit=3}}
 
== Tinjauan dasar ==