Model Markov tersembunyi: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Tidak ada ringkasan suntingan |
Tidak ada ringkasan suntingan |
||
Baris 1:
Model Markov Tersembunyi atau lebih dikenal sebagai Hidden Markov Model (HMM) adalah sebuah model statistik dari sebuah sistem yang diasumsikan sebuah Markov Process dengan parameter yang tak diketahui, dan tantangannya adalah menentukan parameter-parameter tersembunyi (hidden) dari parameter-parameter yang dapat diamati. Parameter-parameter yang ditentukan kemudian dapat digunakan untuk analisis yang lebih jauh, misalnya untuk aplikasi Pattern Recognition. Sebuah HMM dapat dianggap sebagai sebuah Bayesian Network dinamis yang paling sederhana.
Pada model Markov umum, state-nya langsung dapat diamati, oleh karena itu probabilitas transisi state menjadi satu-satunya parameter. Di dalam Model Markov yang Hidden (tersembunyi) , state-nya tidak dapat diamati secara langsung, akan tetapi yang dapat diamati adalah variabel-variabel yang terpengaruh oleh state. Setiap state memiliki distribusi probabilitas atas token-token output yang mungkin muncul. Oleh karena itu rangkaian token yang dihasilkan oleh HMM memberikan sebagian informasi tentang sekuens state-state.
Baris 10:
Diagram di bawah menggambarkan arsitektur umum tentang HMM. Masing-masing bentuk oval menggambarkan sebuah variabel acak (random variable) yang berisikan nilai. Variabel Acak x(t) berisikan nilai sebuah variabel tersembunyi pada saat t. variabel acak y(t) berisikan nilai sebuah variabel yang dapat diamati (tidak tersembunyi) pada saat t. Anak panah menunjukkan ketergantungan kondisional. Dari diagram, jelas kiranya bahwa nilai x(t) hanya bergantung pada nilai x(t-1). Selain itu, nilai y(t) hanya bergantung pada x(t).
[[Berkas:http://upload.wikimedia.org/wikipedia/en/a/ab/Hmm_temporal_bayesian_net.png]]
== Probabilitas Barisan (Sequence) yang Teramati ==
Baris 33 ⟶ 35:
Anggaplah Anda tahu kecenderungan cuaca di daerah kawan tersebut, dan kecenderungan apa yang kawan Anda lakukan (secara rata-rata). Dengan kata lain, parameter-parameter dari HMM sudah diketahui. Anda bisa menuliskannya di dalam bahasa pemrograman Python:
states = ('Rainy', 'Sunny')
observations = ('walk', 'shop', 'clean')
start_probability = {'Rainy': 0.6, 'Sunny': 0.4}
transition_probability = {
'Rainy' : {'Rainy': 0.7, 'Sunny': 0.3},
'Sunny' : {'Rainy': 0.4, 'Sunny': 0.6},
}
emission_probability = {
'Rainy' : {'walk': 0.1, 'shop': 0.4, 'clean': 0.5},
'Sunny' : {'walk': 0.6, 'shop': 0.3, 'clean': 0.1},
}
Dalam penggalan kode di atas, start_probability mewakili ketidakpastian tentang state mana HMM berada ketika kawan Anda menelfon untuk pertamakali. (Yang Anda ketahui hanyalah kecenderungan untuk hujan). Distribusi Peluang yang digunakan di sini bukanlah yang setimbang, yang (merujuk pada peluang transisi) kira-kira {'Rainy':0.571, 'Sunny':0.429}. transition_probability menggambarkan perubahan cuaca di rantai Markov yang dipakai. Dalam contoh ini, hanya 30% peluang bahwa besok akan cerah jika hari ini hujan. emmision_probability menggambarkan seberapa mungkin kawan Anda melakukan aktivitas tertentu pada satu harinya. Jika hari hujan, maka ada 50% peluang bahwa dia sedang membersihkan apartemennya; jika hari cerah, ada 60% peluang bahwa dia ada di luar untuk berjalan-jalan.
== Aplikasi dari Hidden Markov Model ==
* speech recognition atau optical character recognition
* machine translation
* bioinformatika dan genomik
** prediksi daerah produsen protein dalam barisan genome
** pemodelan famili DNA terkait atau barisan protein
** prediksi elemen struktur sekunder dari barisan protein primer
|