Keterkaitan kuantum: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
EmausBot (bicara | kontrib)
k Bot: Migrasi 34 pranala interwiki, karena telah disediakan oleh Wikidata pada item d:Q215675
Tidak ada ringkasan suntingan
Baris 1:
'''KeterkaitanKeterikatan kuantum''' adalah fenomena yang terjadi ketika sekelompok [[mekanikapartikel]] dihasilkan, berinteraksi, atau berbagi kedekatan spasial sedemikian rupa sehingga [[keadaan kuantum]] dari setiap partikel kelompok tidak dapat dijelaskan secara independen dari keadaan yang lain, termasuk ketika partikel dipisahkan oleh jarak yang jauh. Topik keterikatan kuantum merupakan inti perbedaan antara fisika klasik dan fisika kuantum: keterikatan adalah ciri utama mekanika kuantum yang tidak ada dalam mekanika klasik.<ref>{{Cite news|last=Overbye|first=Dennis|date=2022-10-10|title=Black Holes May Hide a Mind-Bending Secret About Our Universe|url=https://www.nytimes.com/2022/10/10/science/black-holes-cosmology-hologram.html|newspaper=The New York Times|language=en-US|issn=0362-4331|access-date=2022-11-27}}</ref><ref>{{Cite web|last=Starr|first=Michelle|date=2022-11-15|title=Scientists Simulated a Black Hole in The Lab, And Then It Started to Glow|url=https://www.sciencealert.com/scientists-created-a-black-hole-in-the-lab-and-then-it-started-to-glow|website=ScienceAlert|language=en-US|access-date=2022-11-27}}</ref> Dalam bahasa lain, Keterikatan kuantum adalah fenomena mekanika kuantum dimana kuantum menyatakan bahwa dua atau lebih objek harus dideskripsikan dengan referensi antar objek, meskipun objek-objek tersebut tidaklah berkaitan secara spasial. Hal ini mengarah pada korelasi antara atribut fisik objek yang dapat diamati dari suatu sistem. Contohnya, adalah mungkin untuk menyiapkan 2 partikel dalam satu kondisi kuantum seperti ketika yang satu diteliti adalah "spin up" maka yang satunya adalah "spin down" dan begitu pula seterusnya.
 
Eksperimen mengenai fenomena keterikatan kuantum ini didemonstrasikan dengan menggunaka [[foton]],<ref>{{Cite journal|last=Kocher|first=Carl Alvin|date=1967-05-01|title=POLARIZATION CORRELATION OF PHOTONS EMITTED IN AN ATOMIC CASCADE|url=https://escholarship.org/uc/item/1kb7660q|language=en}}</ref><ref>{{Cite journal|last=Kocher|first=Carl Alvin|date=1967-05-01|title=POLARIZATION CORRELATION OF PHOTONS EMITTED IN AN ATOMIC CASCADE|url=https://escholarship.org/uc/item/1kb7660q|language=en}}</ref> [[neutrino]], [[elektron]],<ref>{{Cite journal|last=Hensen|first=B.|last2=Bernien|first2=H.|last3=Dréau|first3=A. E.|last4=Reiserer|first4=A.|last5=Kalb|first5=N.|last6=Blok|first6=M. S.|last7=Ruitenberg|first7=J.|last8=Vermeulen|first8=R. F. L.|last9=Schouten|first9=R. N.|date=2015-10|title=Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres|url=https://www.nature.com/articles/nature15759|journal=Nature|language=en|volume=526|issue=7575|pages=682–686|doi=10.1038/nature15759|issn=1476-4687}}</ref><ref>{{Cite news|last=Markoff|first=John|date=2015-10-21|title=Sorry, Einstein. Quantum Study Suggests ‘Spooky Action’ Is Real.|url=https://www.nytimes.com/2015/10/22/science/quantum-theory-experiment-said-to-prove-spooky-interactions.html|newspaper=The New York Times|language=en-US|issn=0362-4331|access-date=2022-11-27}}</ref> molekul sebesar [[bukminsterfulerena]],<ref>{{Cite journal|last=Arndt|first=Markus|last2=Nairz|first2=Olaf|last3=Vos-Andreae|first3=Julian|last4=Keller|first4=Claudia|last5=van der Zouw|first5=Gerbrand|last6=Zeilinger|first6=Anton|date=1999-10|title=Wave–particle duality of C60 molecules|url=https://www.nature.com/articles/44348|journal=Nature|language=en|volume=401|issue=6754|pages=680–682|doi=10.1038/44348|issn=1476-4687}}</ref> hingga menggunakan berlian kecil.<ref>{{Cite journal|last=Lee|first=K. C.|last2=Sprague|first2=M. R.|last3=Sussman|first3=B. J.|last4=Nunn|first4=J.|last5=Langford|first5=N. K.|last6=Jin|first6=X.-M.|last7=Champion|first7=T.|last8=Michelberger|first8=P.|last9=Reim|first9=K. F.|date=2011-12-02|title=Entangling Macroscopic Diamonds at Room Temperature|url=https://www.science.org/doi/10.1126/science.1211914|journal=Science|language=en|volume=334|issue=6060|pages=1253–1256|doi=10.1126/science.1211914|issn=0036-8075}}</ref> Saat ini sejumlah ilmuwan meneliti pemanfaatan keterikatan kuantum untuk bidang [[komunikasi]], [[komputasi]], dan [[radar kuantum]].
{{komputer-stub}}
 
Peraih Nobel dalam Fisika baru-baru ini diberikan kepada [[Alain Aspect]], [[John Clauser|John F. Clauser]] dan [[Anton Zeilinger]] atas penelitian mereka tentang foton terikat dan merintis ilmu informasi kuantum, yang kemudian akan digunakan untuk mengembangkan teknologi informasi kuantum.<ref>{{Cite web|title=The Nobel Prize in Physics 2022|url=https://www.nobelprize.org/prizes/physics/2022/press-release/|website=NobelPrize.org|language=en-US|access-date=2022-11-27}}</ref>
[[Kategori:Mekanika kuantum]]
 
== Referensi ==
<references />
 
== Bacaan lanjutan ==
* {{cite book |chapter=Geometry of Quantum States|title=An Introduction to Quantum Entanglement |publisher=Cambridge University Press |location=Cambridge |year=2006|author1 = Bengtsson I|author2 = Życzkowski K }} [http://chaos.if.uj.edu.pl/~karol/geometry.htm edisi revisi (2017)]
* {{cite book |author=Cramer, JG |title=The Quantum Handshake: Entanglement, Nonlocality and Transactions|url=https://www.google.co.id/books/edition/The_Quantum_Handshake/WklECwAAQBAJ?hl=en&gbpv=1|publisher=Springer Verlag |year=2015 |isbn=978-3-319-24642-0 }}
* {{cite book |author=Duarte, FJ|title=Fundamentals of Quantum Entanglement|url=https://www.google.co.id/books/edition/Fundamentals_of_Quantum_Entanglement/KMsuzwEACAAJ?hl=en|publisher=Institute of Physics |location= Bristol, UK|year=2019 |isbn=978-0-7503-2226-3 }}
* {{cite journal|first1=O. |last1=Gühne|first2=G. |last2=Tóth|title=Entanglement detection|journal=Physics Reports|volume=474|issue=1–6|year=2009|pages=1–75|arxiv=0811.2803|bibcode=2009PhR...474....1G|doi=10.1016/j.physrep.2009.02.004|s2cid=119288569}}
* {{cite journal |author=Horodecki R, Horodecki P, Horodecki M, Horodecki K |title=Quantum entanglement |journal=Rev. Mod. Phys. |arxiv=quant-ph/0702225 |doi =10.1103/RevModPhys.81.865 |year=2009 |bibcode=2009RvMP...81..865H |volume=81 |issue=2 |pages=865–942|last2=Horodecki |last3=Horodecki |last4=Horodecki |s2cid=59577352 }}
* {{cite journal |author=Hill S, Wootters WK |title=Entanglement of a Pair of Quantum Bits |journal=Phys. Rev. Lett. |arxiv=quant-ph/9703041 |doi =10.1103/PhysRevLett.78.5022 |year=1997 |volume=78 |issue=26 |pages=5022–5025 |bibcode=1997PhRvL..78.5022H |s2cid=9173232 }}
* {{cite journal |author=Bhaskara VS, Panigrahi PK |title=Generalized concurrence measure for faithful quantification of multiparticle pure state entanglement using Lagrange's identity and wedge product |journal=Quantum Information Processing |arxiv=1607.00164 |doi =10.1007/s11128-017-1568-0 |year=2017 |volume=16 |issue=5 |pages=118 |bibcode=2017QuIP...16..118B |s2cid=43754114 }}
* {{cite journal |author=Swain SN, Bhaskara VS, Panigrahi PK |title=Generalized entanglement measure for continuous-variable systems |journal=Phys. Rev. A |arxiv=1706.01448 |doi =10.1103/PhysRevA.105.052441 |year=2022 |volume=105 |issue=5 |pages=052441 |bibcode=2022PhRvA.105e2441S |s2cid=239885759 }}
* {{cite book |author=Jaeger G |year=2009 |title=Entanglement, Information, and the Interpretation of Quantum Mechanics|url=https://www.google.co.id/books/edition/Entanglement_Information_and_the_Interpr/BPj4DrsG9gQC?hl=en&gbpv=1|location=Heildelberg |publisher=Springer |isbn=978-3-540-92127-1}}
* {{cite journal |author=Plenio MB, Virmani S |title=An introduction to entanglement measures |journal=Quant. Inf. Comp. |volume=1 |issue=7 |pages=1–51 |arxiv=quant-ph/0504163 |year=2007|bibcode=2005quant.ph..4163P |last2=Virmani }}
* {{cite journal |author=Shadbolt PJ, Verde MR, Peruzzo A, Politi A, Laing A, Lobino M, Matthews JCF, Thompson MG, O'Brien JL |title=Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit |journal=Nature Photonics |arxiv=1108.3309 |doi=10.1038/nphoton.2011.283 |year=2012 |volume=6 |issue=1 |pages=45–59 |bibcode = 2012NaPho...6...45S |last2=Verde |last3=Peruzzo |last4=Politi |last5=Laing |last6=Lobino |last7=Matthews |last8=Thompson |last9=O'Brien |s2cid=56206588 }}
* {{cite book |author=Steward EG |title=Quantum Mechanics: Its Early Development and the Road to Entanglement|url=https://www.google.co.id/books/edition/Quantum_Mechanics_Its_Early_Development/Qs42DwAAQBAJ?hl=en&gbpv=1|publisher=Imperial College Press |year=2008 |isbn=978-1-86094-978-4}}
* {{cite journal | doi = 10.1103/RevModPhys.74.197 | arxiv = quant-ph/0102094 | bibcode=2002RvMP...74..197V | volume=74 | issue = 1 | title=The role of relative entropy in quantum information theory | year=2002 | journal=Reviews of Modern Physics | pages=197–234 | last1 = Vedral | first1 = V.| s2cid = 6370982 }}