Efek Sagnac: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Tidak ada ringkasan suntingan
Tidak ada ringkasan suntingan
Baris 35:
<!--
In 1926, an ambitious ring interferometry experiment was set up by [[Albert Abraham Michelson|Albert Michelson]] and [[Henry Gale (astrophysicist)|Henry Gale]]. The aim was to find out whether the rotation of the Earth has an effect on the propagation of light in the vicinity of the Earth. The [[Michelson–Gale–Pearson experiment]] was a very large ring interferometer, (a perimeter of 1.9 kilometer), large enough to detect the angular velocity of the Earth. The outcome of the experiment was that the angular velocity of the Earth as measured by astronomy was confirmed to within measuring accuracy. The ring interferometer of the Michelson-Gale experiment was not calibrated by comparison with an outside reference (which was not possible, because the setup was fixed to the Earth). From its design it could be deduced where the central interference fringe ought to be if there would be zero shift. The measured shift was 230 parts in 1000, with an accuracy of 5 parts in 1000. The predicted shift was 237 parts in 1000.<ref>Albert Abraham Michelson, Henry G. Gale: ''[http://adsabs.harvard.edu/abs/1925ApJ....61..140M The Effect of the Earth's Rotation on the Velocity of Light]'', in: ''The Astrophysical Journal'' 61 (1925), S. 140&ndash;145</ref>
-->
 
== TheoryTeori ==
[[File:Sagnac shift.svg|thumb|right|FigureGambar 3. LightCahaya travelingberjalan oppositedengan directionsarah goberlawanan differentmenempuh distancesjarak beforeberbeda reachingsebelum themencapai movingsumber sourcebergerak.]]
ThePergeseran shifttepi-tepi innterferensi interferencedalam fringes in a ringsuatu interferometer cancincin bedapat vieweddilihat simplysebagai askonsekuensi adari consequence of the differentperbedaan ''distancesjarak'' thatyang lightditempuh travelsoleh duecahaya tokarena theperputaran rotationcincin oflight. the ring.(Fig.Gambar&nbsp;3)<ref name=BrownSagnac>{{cite web|last=Brown|first=Kevin|title=The Sagnac Effect |publisher=MathPages |url=http://mathpages.com/rr/s2-07/2-07.htm |accessdate=15 February 2013}}</ref> TheDerivatisasi simplestpaling derivationsederhana isdari forsuatu acincin circularmelingkar ringyang rotatingberputar atpada ansuatu kecepatan [[angular velocity]] of <math> \omega </math>, buttetapi thehasilnya resultumum isuntuk generalgeometri formelingkar looppada geometriesbentuk-bentuk with other shapeslain. IfJika asuatu lightsumber sourcecahaya emitsmemancar inke bothdua directionsarah fromdari onesatu pointtitik onpada thecincin rotating ringberputar, lightcahaya travelingyang inke thearah samesama directiondengan asarah therotasi rotationperlu directionmenempuh needsjarak tolebih traveldari moresatu thankali one[[keliling circumferencelingkaran]] aroundsebelum theakhirnya ringmencapai beforesumber itcahaya catchesdari up with the light source from behindbelakang. The timeWaktu <math> t_1 </math> thatYang itdibutuhkan takesuntuk tomengejar catch up with the lightsumber sourcecahaya isitu givenmempunyai bypersamaan:
 
: <math> t_1 = \frac {2 \pi R + \Delta L}{c} </math>
 
<math> \Delta L </math> isadalah the distancejarak (blackpanah boldhitam arrowtebal inpada Fig.Gambar&nbsp;3) thatpergerakan thekaca mirrorpada haswaktu movedyang in that same time:sama.
 
: <math> \Delta L = R \omega t_1. \, </math>
 
EliminatingPenghilangan <math> \Delta L </math> fromDari thekedua twopersamaan equationsitu aboveakan we getmenghasilkan:
 
: <math> t_1 = \frac {2 \pi R }{c - R \omega}. </math>
<!--
 
Likewise, the light traveling in the opposite direction of the rotation will travel less than one circumference before hitting the light source on the front side. So the time for this direction of light to reach the moving source again is: