Tanda (matematika): Perbedaan antara revisi

Konten dihapus Konten ditambahkan
←Membuat halaman berisi '{{for|symbols named "… sign"|Daftar simbol matematika}} thumb|right|150px|[[plus and minus signs|Simbol plus dan minus yang digunakan untuk me...'
 
Tidak ada ringkasan suntingan
Baris 1:
{{for|symbols named "… sign"|Daftar simbol matematika}}
[[File:PlusMinus.svg|thumb|right|150px|[[:en:plus and minus signs|Simbol plus dan minus]] yang digunakan untuk menunjukkan tanda suatu bilangan.]]
 
'''Tanda''' dalam [[matematika]] merupakan suatu konsep yang berasal dari sifat setiap [[bilangan real]] yang bukan [[nol]] yang dapat berupa [[positif]] atau [[negatif]]. Bilangan [[0 (angka)|nol]] sendiri tidak bertanda, meskpun pada sejumlah konteks diperlukan juga suatu bilangan nol bertanda. Dalam penerapannya pada bilangan-bilangan real, "perubahan tanda" banyak digunakan dalam [[matematika]] dan [[fisika]] untuk menyatakan [[invers aditif]] ([[perkalian]] dengan bilangan [[−1]]), bahkan untuk kuantitas-kuantitas yang bukan bilangan real (yaitu yang tidak digolongkan atas positif, negatif atau nol). Juga, kata "tanda" dapa mengindikasikan aspek-aspek obyek matematika yang mirip dengan positivitas dan negativitas, seperti [[:en:Parity of a permutation|tanda suatu permutatsi]]<!-- (see [[#Other meanings|below]])-->.
<!--
== Tanda suatu bilangan ==
A [[real number]] is said to be positive if it is [[inequality (mathematics)|greater than]] zero, and [[negative number|negative]] if it is less than zero. The attribute of being positive or negative is called the '''sign''' of the number. Zero itself is not considered to have a sign (though this is context dependant, see below). Also, signs are not defined for [[complex numbers]], although the [[argument (complex analysis)|argument]] generalizes it in some sense.
 
== Tanda suatu bilangan ==
Suatu [[bilangan real]] dikatakan [[bilangan positif|positif]] jika [[:en:inequality (mathematics)|lebih besar dari]] bilangan [[nol]], dan [[bilangan negatif|negatif]] jika kurang dari [[nol]]. Atribut positif dan negatif disebut sebagai '''tanda''' bilangan itu. Bilangan nol sendiri tidak dipandang mempunyai tanda. Tanda bilangan tidak didefinisikan untuk [[bilangan kompleks]], meskipun [[:en:argument (complex analysis)|argumen]] menggeneralisasinya pada pengertian tertentu.
<!--
In common [[numeral system|numeral notation]] (which is used in [[arithmetic]] and elsewhere), the sign of a number is often denoted by placing [[plus and minus signs|a plus sign or a minus sign]] before the number. For example, +3 would denote a positive 3, and −3 would denote a negative 3. When no plus or minus sign is given, the default interpretation is that a number is positive. Because of this notation, as well as the definition of negative numbers through [[subtraction]], the [[minus sign]] is perceived to have a strong association with negative numbers (of the negative sign). Likewise, "+" associates with positivity.
 
Baris 12:
 
Any non-zero number can be changed to a positive one using the [[absolute value]] function. For example, the absolute value of −3 and the absolute value of 3 are both equal to 3. In symbols, this would be written |−3| = 3 and |3| = 3.
-->
 
===Tanda untuk bilangan nol ===
Bilangan [[0 (angka)|nol]] bukan bilangan positif maupun bilangan negatif, sehingga tidak mempunyai tanda. Dalam aritmetika, '''+0''' dan '''−0''' keduanya melambangkan bilangan yang sama yaitu "'''0'''", yang merupakan [[invers aditif]] terhadap dirinya sendiri.
The number [[0 (number)|zero]] is neither positive nor negative, and therefore has no sign. In arithmetic, +0 and −0 both denote the same number 0, which is the additive inverse of itself.
<!--
 
Note that this definition is culturally determined. In France and Belgium, 0 is said to be both positive and negative. The positive resp. negative numbers without zero are said to be "strictly positive" resp. "strictly negative".
 
Baris 24:
==={{anchor|non-negative and non-positive}} Terminology for signs===
<!-- Several articles link to the above anchor -->
Karena nol bukan bilangan positif atau negatif (di kebanyakan negara), maka frasa-frasa berikut ini kadangkala digunakan untuk merujuk tanda suatu bilangan yang tidak dikenal:
Because zero is neither positive nor negative (in most countries), the following phrases are sometimes used to refer to the sign of an unknown number:
* ASuatu numberbilangan isadalah '''positivepositif''' ifjika itlebih isbesar greaterdari than zeronol.
* ASuatu numberbilangan isadalah '''negativenegatif''' ifjika itlebih iskecil lessdari than zeronol.
* ASuatu numberbilangan isadalah '''non-negativenegatif''' ifjika itlebih isbesar greaterdari thanatau orsama equaldengan to zeronol.
* ASuatu numberbilangan isadalah '''non-positivepositif''' ifjika itlebih iskecil lessdari thanatau orsama equaldengan to zeronol.
Jadi suatu bilangan non-negatif dapat berupa bilangan positif atau bilangan nol, sedangkan bilangan non-positif dapat berupa bilangan negatif atau bilangan nol. Misalnya [[nilai mutlak]] suatu bilangan real selalu berupa bilangan non-negatif, tetapi tidak harus berupa bilangan positif.
Thus a non-negative number is either positive or zero, while a non-positive number is either negative or zero. For example, the [[absolute value]] of a real number is always non-negative, but is not necessarily positive.
<!--
 
The same terminology is sometimes used for [[Function (mathematics)|functions]] that take real or integer values. For example, a function would be called positive if all of its values are positive, or non-negative if all of its values are non-negative.
 
Baris 56:
 
It is also possible to associate a sign to an angle of rotation in three dimensions, assuming the [[axis of rotation]] has been oriented. Specifically, a [[right-hand rule|right-handed]] rotation around an oriented axis typically counts as positive, while a left-handed rotation counts as negative.
-->
 
=== Tanda suatu perubahan ===
WhenBilamana asuatu quantitykuantitas ''x'' changesberubah overmenurut timewaktu, the [[:en:Finite difference|changeperubahan]] in the value ofnilai ''x'' is typicallybiasanya defineddidefinisikan bydengan thepersamaan equation
 
:<math>\Delta x = x_\text{final} - x_\text{initial}. \,</math>
 
UsingMenurut thiskaidah conventionini, anpeningkatan increase innilai ''x'' countsdihitung assebagai positiveperubahan changepositif, whilesedangkan a decrease ofpenurunan ''x'' countsdihitung assebagai negativeperubahan changenegatif. InDalam [[calculuskalkulus]], thiskaidah sameyang conventionsama isdigunakan usedpada in the definition of thedefinisi "[[derivativeturunan]]". As a resultAkibatnya, anysetiap [[:en:Monotonic function|increasingfungsi functionyang meningkat]] hasmempunyai positiveturunan derivativepositif, whilesedangkan afungsi decreasingyang functionmenurun hasmempunyai negativeturunan derivativenegatif.
<!--
 
=== Tanda arah ===
In [[analytic geometry]] and [[physics]], it is common to label certain directions as positive or negative. For a basic example, the [[number line]] is usually drawn with positive numbers to the right, and negative numbers to the left:
Baris 169 ⟶ 168:
</div></div>
<!--{{main|Signedness}}
InDalam dunia [[computingkomputer]], ansuatu nilai integer valuedapat mayditandai be either signedmaupun ortidak unsignedditandai, dependingtergantung ondari whetherapakah thekomputer computeritu ismencatat keepingriwayat tracktanda ofuntuk asuatu sign for the numberbilangan. Dengan Bymembatasi restricting an integersuatu [[:en:Variable (programming)|variablevariabel]] tointeger hanya bernilai non-negative values onlynegatif, one moresatu [[bit]] cantambahan bedapat useddigunakan foruntuk storingmenyimpan thenilai valuesuatu of a numberbilangan. Karena Becausecara of the wayaritmetika integer arithmetic is donedikerjakan withindalam computerskomputer, thetanda signdari ofsuatu a signedvariabel integer variablebertanda isbiasanya usuallytidak notdisimpan storedpada assuatu abit single independent bitindependen, butmelainkan isdisimpan instead stored usingmenggunakan [[:en:two's complement|komplemen dua]] oratau some othersejumlah [[:En:signed number representation|representasi bilangan]] yang lain.
<!--
 
In contrast, real numbers are stored and manipulated as [[Floating point]] values. The floating point values are represented using three separate values, mantissa, exponent, and, sign. Given this separate sign bit, it is possible to represent both positive and negative zero. Most programming languages normally treat positive zero and negative zero as equivalent values, albeit, they provide means by which the distinction can be detected.