Reaktor nuklir: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Stefan4 (bicara | kontrib)
k (GR) File renamed: File:Lfr.jpgFile:Lead-Cooled Fast Reactor Schemata.jpg File renaming criterion #2: To change from a meaningless or ambiguous name to a name that describes what the image displays.
BeeyanBot (bicara | kontrib)
k ejaan, replaced: praktek → praktik
Baris 27:
[[File:CANDU fuel cycles.jpg|thumb|right|400px|Range of possible CANDU fuel cycles: CANDU reactors can accept a variety of fuel types, including the used fuel from light-water reactors]]
[[File:SchémaDechetsNucleaires en.svg|400px|thumb|Nuclear Fuel Process]]
Meskipun umat manusia telah menguasai daya nuklir baru-baru ini, reaktor nuklir yang pertama muncul dikendalikan oleh alam. Lima belas reaktor fisi nuklir alami telah ditemukan di tambang [[Oklo]], [[Gabon]], [[West Africa]]. Pertama ditemukan pada tahun 1972 oleh ahli fisika Perancis [[Francis Perrin]]. Reaktor alami ini dikenal dengan sebutan [[Reaktor fissi nuklir alami|Reaktor Fossil Oklo]]. Reaktor-reaktor ini diperkirakan aktif selama 150 juta tahun, dengan daya keluaran rata-rata 100 &nbsp;kW. Bintang-bintang juga mengandalkan fusi nuklir guna membangkitkan panas, cahaya dan radiasi lainnya. Konsep reaktor nuklir alami diajukan pertama kali oleh [[Paul Kuroda]] pada tahun [[1956]] saat di [[Universitas Arkansas]] <ref name="OCRWM">{{cite web|title=Oklo: Natural Nuclear Reactors|work=Office of Civilian Radioactive Waste Management|url=http://www.ocrwm.doe.gov/factsheets/doeymp0010.shtml|accessdate=June 28|accessyear=2006}}</ref>.
 
[[Enrico Fermi]] dan [[Leó Szilárd]], pertama kali membangun reaktor nuklir [[Chicago Pile-1]] saat mereka di [[Universitas Chicago]] pada 2 Desember, [[1942]].
Baris 33:
Reaktor nuklir generasi pertama digunakan untuk menghasilkan plutonium sebagai bahan senjata nuklir. Selain itu, reaktor nuklir juga digunakan oleh angkatan laut Amerika (lihat [[Reaktor Angkatan Laut Amerika Serikat]]) untuk menggerakkan [[kapal selam]] dan kapal pengangkut pesawat udara. Pada pertengahan [[1950]]-an, baik [[Uni Sovyet]] maupun negara-negara barat meningkatkan penelitian nuklirnya termasuk penggunaan atom di luar militer. Tetapi, sebagaimana program militer, penelitian atom di bidang non-militer juga dilakukan dengan rahasia.
 
Pada 20 Desember [[1951]], listrik dari generator yang digerakkan oleh tenaga nuklir pertama kali dihasilkan oleh [[EBR-I|Experimental Breeder Reactor-I]] (EBR-1) yang berlokasi di [[Arco, Idaho]]. Pada 26 Juni [[1954]], pukul 5:30 pagi, PLTN pertama dunia utnuk pertama kalinya mulai beroperasi di [[Obninsk]], [[Kaluga Oblast]], [[USSR]]. PLTN ini menghasilkan 5 megawatt, cukup untuk melayani daya 2,000 rumah. <ref name="IAEANews">{{cite web|title=From Obninsk Beyond: Nuclear Power Conference Looks to Future|work=[[International Atomic Energy Agency]]|url=http://www.iaea.org/NewsCenter/News/2004/obninsk.html|accessdate=June 27|accessyear=2006}}</ref><ref name="WNA">{{cite web|title=Nuclear Power in Russia|work=[[World Nuclear Association]]|url=http://world-nuclear.org/info/inf45.htm|accessdate=June 27|accessyear=2006}}</ref>.
 
PLTN skala komersial pertama dunia adalah [[:en:Sellafield|Calder Hall]], yang mulai beroperasi pada 17 Oktober [[1956]] <ref name="BBC">{{cite web|title=1956:Queen switches on nuclear power|work=[[BBC news]]|url=http://news.bbc.co.uk/onthisday/hi/dates/stories/october/17/newsid_3147000/3147145.stm|accessdate=June 28|accessyear=2006}}</ref>. Reaktor generasi pertama lainnya adalah [[Shippingport Reactor]] yang berada di [[Pennsylvania]] (1957). <!--''Lots of construction in 60s and 70s (oil crisis influenced) - need some numbers here--<--Actually, the oil crisis of 1974 did not stimulate nuclear power plant orders in the US: orders immediately declined, hitting zero by 1978. The experts had overprojected demand. Viz. “Political Economy of Nuclear Energy in the United States, Brookings Institution, 2004, http://www.brookings.edu/comm/policybriefs/pb138.htm ''-->
Baris 51:
 
==Proses Kerja Pusat Listrik Tenaga Nuklir==
Proses kerja PLTN sebenarnya hampir sama dengan proses kerja pembangkit listrik konvensional seperti pembangkit listrik tenaga uap (PLTU), yang umumnya sudah dikenal secara luas. Yang membedakan antara dua jenis pembangkit listrik itu adalah sumber panas yang digunakan. PLTN mendapatkan suplai panas dari reaksi nuklir, sedang PLTU mendapatkan suplai panas dari pembakaran bahan bakar fosil seperti batubara atau minyak bumi.
 
Reaktor daya dirancang untuk memproduksi energi listrik melalui PLTN. Reaktor daya hanya memanfaatkan energi panas yang timbul dari reaksi fisi, sedang kelebihan neutron dalam teras reaktor akan dibuang atau diserap menggunakan batang kendali. Karena memanfaatkan panas hasil fisi, maka reaktor daya dirancang berdaya thermal tinggi dari orde ratusan hingga ribuan MW. Proses pemanfaatan panas hasil fisi untuk menghasilkan energi listrik di dalam PLTN adalah sebagai berikut :
 
#Bahan bakar nuklir melakukan reaksi fisi sehingga dilepaskan energi dalam bentuk panas yang sangat besar.
#Panas hasil reaksi nuklir tersebut dimanfaatkan untuk menguapkan air pendingin, bisa pendingin primer maupun sekunder bergantung pada tipe reaktor nuklir yang digunakan.
#Uap air yang dihasilkan dipakai untuk memutar turbin sehingga dihasilkan energi gerak (kinetik).
#Energi kinetik dari turbin ini selanjutnya dipakai untuk memutar generator sehingga dihasilkan arus listrik.
 
== Komponen dasar reaktor nuklir ==
Baris 70:
 
==Klasifikasi Reaktor==
Macam reaktor dibedakan berdasarkan kegunaan, tenaga neutron dan nama komponen serta parameter operasinya.
 
Menurut kegunaan:
Baris 91:
 
*Reaktor thermal (lambat) menggunakan neutron lambat atau neutron thermal. Reaktor ini bercirikan mempunyai moderator neutron / material pelambat yang ditujukan untuk melambatkan neutron sampai mempunyai energi kinetik rerata partikel yang ada disekitarnya, dengan kata lain, sampai mereka "dithermalkan". Reaktor termal, reaktor jenis ini menggunakan neutron lambat atau neutron thermal. Hampir semua reaktor yang ada saat ini adalah reaktor jenis reaktor termal. Reaktor ini mempunyai bahan moderasi neutron yang dapat memperlambat neutron hingga mencapai energy termal. Kemungkinan (propabilitas) lebih besar terjadinya reaksi fisi antara neutron termal dan bahan fisil seperti Uranium 235, Plutonium 239 dan Plutonium 241 dan akan mempunyai kemungkinan lebih kecil terjadinya reaksi fisi dengan Uranium 238. Dalam reaktor jenis ini, biasanya pendingin juga berfungsi sebagai moderator neutron, reaktor jenis ini umumnya menggunakan pendingin air dalam tekanan tinggi untuk meningkatkan titik didih air pendingin. Reaktor ini diwadahi dalam suatu tanki reaktor yang didalamnya dilengkapi dengan instrumentasi pemantau dan pengendali reaktor, pelindung radiasi dan gedung containment
 
*Reaktor cepat, reaktor jenis ini menggunakan neutron cepat untuk menghasilkan fisi dalam bahan bakar reaktor nuklir. reaktor jenis ini tidak memiliki moderator neutron, dan menggunakan bahan pendingin yang kurang memoderasi neutron. Untuk tetap menjaga agar reaksi nuklir berantai tetap berjalan maka diperlukan bahan bakar yang mempunyai bahan belah (fissile material) dengan kandungan uranium 235 yang lebih tinggi (lebih dari 20 %). Reaktor cepat mempunyai potensi menghasilkan limbah trasnuranic yang lebih kecil karena semua aktinida dapat terbelah dengan menggunakan neutron cepat, namun reaktor ini sulit untuk dibangun dan mahal dalam pengoperasiannya.
 
Baris 108 ⟶ 107:
Kedua kemampuan baik lokal dan nasional jaringan listrik harus sesuai dengan tenaga listrik reaktor yang diusulkan akan menyampaikan ke jaringan. Jaringan kesesuaian ditentukan oleh kombinasi dari kapasitas terpasang dan eksternalitas yang didefinisikan oleh masih ada jaringan listrik. Bagaimana kapasitas jaringan listrik berdampak pada persyaratan keuangan, kelayakan ekonomi jangka panjang, dan ketersediaan dari reaktor.
;Komersialisasi roadmap
Menurut sejarah, perpindahan dasar sumber daya oleh sumber alternatif telah menjadi proses evolusi bukan pergeseran tiba-tiba, mengganggu, dan radikal. Mencoba untuk "mendorong amplop"dengan memaksa pergeseran ke arah ekonomis yang tidak layak karena investor jarang bersedia menanggung biaya, misalnya, biaya modal terkait dengan penyebaran teknologi alternatif ke dalam arsitektur jaringan yang ada. Karena itu komersialisasi roadmap harus mencakup waktu yang masuk akal untuk penyebaran (terutama di negara berkembang teknologi powerhouses seperti Cina, India, dan Republik Korea) Akankah praktekpraktik konstruksi modular merampingkan komersialisasi reaktor nuklir dan mengurangi semalam biaya beban.
;Siklus bahan bakar
Rincian siklus bahan bakar reaktor yang diberikan itu adalah unsur yang sangat penting dalam menentukan tingkat risiko untuk keselamatan nuklir, keamanan, dan penjamin. Dengan kedua bagian depan dan belakang ujung siklus bahan bakar, intrinsik sifat reaktor pasangan desain erat dengan eksternalitas seperti kemungkinan internasionalisasi depan dan ujung belakang proses.
Baris 147 ⟶ 146:
Secara konseptual, reaktor Gen IV memiliki semua fitur dari unit Gen III +, serta kemampuan, ketika beroperasi pada suhu tinggi, untuk mendukung ekonomi produksi hidrogen, energi panas terambil, dan bahkan mungkin desalinasi air. Selain itu, desain ini termasuk manajemen aktinida canggih.
 
Reaktor Gen IV akan sampai dua sampai empat dekade ke depan, meskipun beberapa desain bisa akan tersedia dalam satu dekade. Seperti dalam kasus desain Gen III dan Gen III + dalam Amerika Serikat, Gen IV desain harus disertifikasi oleh NRC sesuai dengan 10 CFR Part 52, sesuai dengan peraturan diperbarui dan panduan peraturan. Departemen Energi AS (DOE) Kantor Energi nuklir memilikidan mengambil tanggung jawab untuk mengembangkan ilmu yang dibutuhkan selama lima Gen teknologi . Tingkat pendanaan untuk setiap konsep teknologi mencerminkan penilaian DOE konsep ini tahap pengembangan teknologi dan potensinya untuk memenuhi kebutuhan energi nasional. The Next Generation Tenaga Nuklir ( NGNP ) proyek sedang mengembangkan satu contoh dari sistem reaktor Gen IV, Reaktor Suhu Sangat Tinggi , yang dikonfigurasi untuk menyediakan panas suhu tinggi (sampai 950 &nbsp;° C ) untuk varietas co - produk , termasuk produksi hidrogen . NRC bekerjadengan DOE pada pendekatan lisensi . Awal potensial tanggal aplikasi COL adalah pertengahan dekade ini .
 
Secara umum, sistem Gen IV meliputi penuh aktinida daur ulang dan ditempat fasilitas daur bahan bakar berdasarkan pada maju berair , pirometalurgi ,atau lainnya. Penelitian reaktor cepat telah aktif di Amerika Serikat dan lebih aktif di China, Prancis, India, dan negara-negara bekas Soviet Union. Satu alasan untuk menutup siklus bahan bakar dengan reaktor cepat adalah berpotensi mengurangi keterbatasan pasokan uranium. Namun, mengingat ekonomi saat ini pasokan uranium, dari toko primer dan sekunder, tujuan pemuliaan plutonium sipil tidak dapat didasarkan pada kebutuhan komersial saat ini.
Baris 180 ⟶ 179:
{{utama|Kapal pemecah es bertenaga nuklir}}
[[File:Yamal 2009.JPG|thumb|300px|Nuclear icebreaker [[Yamal (icebreaker)|''Yamal'']]]]
Kapal pemecah es / icebreaker bertenaga nuklir adalah kapal bertenaga nukliryang dibangun dengan tujuan untuk digunakan di perairan yang tertutup es. Satu-satunya negara pembangun kapal pemecah es bertenaga nuklir adalah Rusia. Kapal pemecah es bertenaga nuklir telah dibangun oleh Uni Soviet dan kemudian Rusia terutama untuk membantu pengiriman sepanjang Rute Laut Utara di perairan Arktik beku utara Siberia.
 
Kapal pemecah es bertenaga nuklir jauh lebih kuat daripada rekan-rekan diesel mereka, dan meskipun propulsi nuklir mahal untuk menginstal dan memelihara, dengan tuntutan bahan bakar sangat berat dan keterbatasan pada jangkauan dapat membuat kapal diesel kurang praktis dan ekonomis secara keseluruhan untuk tugas-tugas kapal pemecah es.
Baris 247 ⟶ 246:
==Pranala luar==
*[http://www.fas.org/man/dod-101/sys/ship/eng/reactor.html Nuclear Propulsion]
{{tekno-stub}}
 
[[Kategori:Reaktor nuklir| ]]
[[Kategori:Nuklir]]
[[Kategori:Teknologi nuklir]]
 
 
{{tekno-stub}}