Gaya (fisika): Perbedaan antara revisi
Konten dihapus Konten ditambahkan
k Robot: Perubahan kosmetika |
k Bot: Perubahan kosmetika |
||
Baris 13:
'''Gaya''', di dalam ilmu [[fisika]], adalah interaksi apapun yang dapat menyebabkan sebuah benda ber[[massa]] mengalami perubahan gerak, baik dalam bentuk arah, maupun konstruksi geometris.<ref>{{cite web |url=http://eobglossary.gsfc.nasa.gov/Library/glossary.php3?mode=alpha&seg=f&segend=h |title=Glossary |work=Earth Observatory |accessdate=2008-04-09 |publisher=[[NASA]] |quote=Force: Any external agent that causes a change in the motion of a free body, or that causes stress in a fixed body.}}</ref>. Dengan kata lain, sebuah gaya dapat menyebabkan sebuah objek dengan [[massa]] tertentu untuk mengubah [[kecepatan]]nya (termasuk untuk bergerak dari [[Hukum Pertama Newton|keadaan diam]]), atau ber[[akselerasi]], atau untuk ter[[deformasi (teknik)|deformasi]]. Gaya memiliki [[Vektor (spasial)#Panjang|besaran (magnitude)]] dan [[Arah (geometri)|arah]], sehingga merupakan kuantitas [[vektor (geometri)|vektor]]. [[Satuan SI]] yang digunakan untuk mengukur gaya adalah [[Newton (satuan)|Newton]] (dilambangkan dengan N). Gaya sendiri dilambangkan dengan simbol '''F'''.
[[Hukum kedua Newton]] menyatakan bahwa gaya resultan yang bekerja pada suatu benda sama dengan [[turunan waktu|laju]] pada saat [[momentum]]nya berubah terhadap waktu. Jika massa objek konstan, maka hukum ini menyatakan bahwa [[percepatan]] objek berbanding lurus dengan gaya yang bekerja pada objek dan arahnya juga searah dengan gaya tersebut, dinyatakan dengan
:<math>\vec{F} = m \vec{a}</math>
Baris 44:
Secara esensi, ia memberi definisi matematika pertama kali dan hanya definisi matematika dari kuantitas gaya itu sendiri - sebagai turunan waktu momentum: F = dp/dt.
Pada tahun [[1784]] [[Charles Coulomb]] menemukan hukum kuadrat terbalik interaksi antara muatan listrik menggunakan keseimbangan torsional, yang mana adalah gaya fundamental kedua.
Gaya nuklir kuat dan gaya nuklir lemah ditemukan pada abad ke 20.
Dengan pengembangan teori medan kuantum dan relativitas umum, disadari bahwa “gaya” adalah konsep berlebihan yang muncul dari kekekalan momentum (momentum 4 dalam relativitas dan momentum partikel virtual dalam elektrodinamika kuantum).
Dengan demikian sekarang ini dikenal gaya fundamental adalah lebih akurat disebut “interaksi fundamental”.
Baris 58:
Seluruh gaya yang lain berbasiskan pada keempat gaya ini. Sebagai contoh, gesekan adalah perwujudan gaya elektromagnetik yang beraksi antara atom-atom dua permukaan, dan prinsip perkecualian Pauli, yang tidak memperkenankan atom-atom untuk menerobos satu sama lain.
Gaya-gaya dalam pegas dimodelkan oleh hukum Hooke adalah juga hasil gaya elektromagnetik dan prinsip perkecualian Pauli yang beraksi bersama-sama untuk mengembalikan objek ke posisi keseimbangan. Gaya sentrifugal adalah gaya percepatan yang muncul secara sederhana dari percepatan rotasi kerangka acuan.
Pandangan mekanika kuantum modern dari tiga gaya fundamental pertama (seluruhnya kecuali gravitasi) adalah bahwa partikel materi (fermion) tidak secara langsung berinteraksi dengan satu sama lain namun agaknya dengan mempertukarkan partikel virtual (boson). Hasil pertukaran ini adalah apa yang kita sebut interaksi elektromagnetik (gaya Coulomb adalah satu contoh interaksi elektromagnetik).
Dalam relativitas umum, gravitasi tidaklah dipandang sebagai gaya. Melainkan, objek yang bergerak secara bebas dalam medan gravitasi secara sederhana mengalami gerak inersia sepanjang garis lurus dalam ruang-waktu melengkung - didefinisikan sebagai lintasan ruang-waktu terpendek antara dua titik ruang-waktu. Garis lurus ini dalam ruang-waktu dipandang sebagai garis lengkung dalam ruang, dan disebut lintasan balistik objek. Sebagai contoh, bola basket yang dilempar dari landasan bergerak dalam bentuk parabola sebagaimana ia dalam medan gravitasi serba sama.
Lintasan ruang-waktunya (ketika dimensi ekstra ct ditambahkan) adalah hampir garis lurus, sedikit melengkung (dengan jari-jari kelengkungan berorde sedikit tahun cahaya). Turunan waktu perubahan momentum dari benda adalah apa yang kita labeli sebagai "gaya gravitasi".
Contoh:
* Objek berat dalam keadaan jatuh bebas. Perubahan momentumnya sebagaimana
dp/dt = mdv/dt = ma =mg (jika massa m konstan), jadi kita sebut kuantitas mg "gaya gravitasi" yang beraksi pada objek.
Hal ini adalah definisi berat (W = mg) objek.
* Objek berat di atas meja ditarik ke bawah menuju lantai oleh gaya gravitasi (yakni beratnya). Pada waktu yang sama, meja menahan gaya ke bawah dengan gaya ke atas yang sama (disebut gaya normal), menghasilkan gaya netto nol, dan tak ada percepatan. (Jika objek adalah orang, ia sesungguhnya merasa aksi gaya normal terhadapnya dari bawah.)
* Objek berat di atas meja dengan lembut didorong dalam arah menyamping oleh jari-jari.
* Akan tetapi, ia tidak pindah karena gaya dari jari-jari tangan pada objek sekarang dilawan oleh gaya baru gesekan statis, dibangkitkan antara objek dan permukaan meja.
* Gaya baru terbangkitkan ini secara pasti menyeimbangkan gaya yang dikerahkan pada objek oleh jari, dan lagi tak ada percepatan yang terjadi.
Baris 79:
* Objek berat mencapai tepi meja dan jatuh. Sekarang objek, yang dikenai gaya konstan dari beratnya, namun dibebaskan dari gaya normal dan gaya gesek dari meja, memperoleh dalam kecepatannya dalam arah sebanding dengan waktu jatuh, dan jadinya (sebelum ia mencapai kecepatan dimana gaya tahanan udara menjadi signifikan dibandingkan dengan gaya gravitasi) laju perolehan momentum dan kecepatannya adalah konstan. Fakta ini pertama kali ditemukan oleh Galileo.
* Objek berat suspended pada timbangan. Karena objek tidak bergerak (sehingga turunan waktu dari momentumnya adalah nol) maka selama percepatan jatuh bebas g ia harus mengalami percepatan yang diarahkan sama dan berlawanan a = -g dikarenakan aksi pegas.
* Percepatan ini dikalikan dengan massa objek adalah apa yang kita labeli sebagai "gaya reaksi pegas" yang mana secara nyata sama dan berlawanan dengan berat objek mg.
* Mengetahui massa (katakanlah, 1 kg) dan percepatan jatuh bebas (katakanlah, 9,8 meter/detik2) kita dapat menentukan timbangan dengan tanda "9,8 N". Pasang beragam massa (2 kg, 3 kg, ...) kita dapat mengkalibrasi timbangan dan kemudian menggunakan skala tertentu ini untuk mengukur banyak gaya yang lain (gesek, gaya reaksi, gaya listrik, gaya magnetik, dst).
Baris 129:
[[Berkas:Incline.svg|right|thumb|''F<sub>N</sub>'' adalah [[gaya normal]] yang bekerja pada objek.]]
{{main|Gaya normal}}
Gaya normal ditimbulkan oleh gaya repulsif dari interaksi antara atom-atom pada jarak dekat.
=== Friksi ===
Baris 152:
== Gaya dan Potensial ==
Disamping gaya, konsep yang sama secara matematis dari medan energi potensial dapat digunakan untuk kesesuaian. Sebagai contoh, gaya gravitasi yang beraksi pada suatu benda dapat dipandang sebagai aksi medan gravitasi yang hadir pada lokasi benda.
Pernyataan ulang secara matematis definisi energi (melalui definisi kerja), medan skalar potensial didefinisikan sebagai medan yang mana gradien adalah sama dan berlawanan dengan gaya yang dihasilkan pada setiap setiap titik.
Baris 194:
=== Gaya non konservatif ===
Untuk skenario fisis tertentu, adalah tak mungkin untuk memodelkan gaya sebagaimana dikarenakan gradien potensial.
Hal ini seringkali dikarenakan tinjauan makrofisis yang mana menghasilkan gaya sebagai kemunculan dari rata-rata statistik makroskopik dari keadaan mikro.
|