Jaringan saraf tiruan: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Wagino Bot (bicara | kontrib) k →Bibliografi: minor cosmetic change |
Wiramaswara (bicara | kontrib) large overhaul |
||
Baris 1:
[[Berkas:Artificial neural network.svg|thumb|300px|Jaringan saraf tiruan merupakan jaringan dari unit pemroses kecil yang saling terhubung, yang dimodelkan berdasar jaringan saraf ([[neuron]]) [[manusia|jaringan saraf]].]]
'''Jaringan saraf tiruan (JST)''' ([[Bahasa Inggris]]: ''artificial neural network (ANN)'', atau juga disebut ''simulated neural network (SNN)'', atau umumnya hanya disebut ''neural network (NN)''), adalah [[jaringan]] dari sekelompok unit pemroses kecil yang dimodelkan berdasarkan [[jaringan saraf manusia]]. JST merupakan sistem adaptif yang dapat mengubah strukturnya untuk memecahkan masalah berdasarkan informasi eksternal maupun internal yang mengalir melalui jaringan tersebut. Oleh karena sifatnya yang adaptif, JST juga sering disebut dengan jaringan adaptif.
Secara sederhana, JST adalah sebuah alat pemodelan [[data]] [[statistik]] non-linier. JST dapat digunakan untuk memodelkan hubungan yang kompleks antara input dan output untuk menemukan pola-pola pada data.
== Sejarah ==
Saat ini bidang [[kecerdasan buatan]] dalam usahanya menirukan [[intelegensi]] [[manusia]], belum mengadakan pendekatan dalam bentuk fisiknya melainkan dari sisi yang lain. Pertama-tama diadakan studi mengenai teori dasar mekanisme proses terjadinya intelegensi. Bidang ini disebut ''
==
Model pada JST pada dasarnya merupakan fungsi model matematika yang mendefinisikan fungsi <math>f : X \rightarrow Y</math>. Istilah "jaringan" pada JST merujuk pada interkoneksi dari beberapa ''neuron'' yang diletakkan pada lapisan yang berbeda. Secara umum, lapisan pada JST dibagi menjadi tiga bagian:
* Lapis masukan (''input layer'') terdiri dari ''neuron'' yang menerima data masukan dari variabel X. Semua ''neuron'' pada lapis ini dapat terhubung ke ''neuron'' pada lapisan tersembunyi atau langsung ke lapisan luaran jika jaringan tidak menggunakan lapisan tersembunyi.
* Lapisan tersembunyi (''hidden layer'') terdiri dari ''neuron'' yang menerima data dari lapisan masukan.
* Lapisan luaran (''output layer'') terdiri dari ''neuron'' yang menerima data dari lapisan tersembunyi atau langsung dari lapisan masukan yang nilai luarannya melambangkan hasil kalkulasi dari X menjadi nilai Y.
Secara matematis, ''neuron'' merupakan sebuah fungsi yang menerima masukan dari lapisan sebelumnya<math>g_i(x)</math> (lapisan ke-i). Fungsi ini pada umumnya mengolah sebuah vektor untuk kemudian ditransformasi ke nilai skalar melalui komposisi ''nonlinear weighted sum,'' dimana <math>f(x) = K(\sum_i w_i g_i(x))</math> dan K merupakan fungsi khusus yang sering disebut dengan fungsi aktivasi.
== Definisi ==
*
== Lihat pula ==
|