Konten dihapus Konten ditambahkan
"pessan" typo dari "pesan"
VersaGood (bicara | kontrib)
k Memperbaiki kata
Baris 5:
Algortima RSA dijabarkan pada tahun [[1977]] oleh tiga orang : [[Ron Rivest]], [[Adi Shamir]] dan [[Len Adleman]] dari [[Massachusetts Institute of Technology]]. Huruf '''RSA''' itu sendiri berasal dari inisial nama mereka ('''R'''ivest—'''S'''hamir—'''A'''dleman).
 
[[Clifford Cocks]], seorang matematikawan [[Inggris]] yang bekerja untuk [[GCHQ]], menjabarkan tentang sistem equivalenekuivalen pada dokumen internal pada tahun [[1973]]. Penemuan Clifford Cocks tidak terungkap hingga tahun [[1997]] karena alasan ''top-secret classification''.
 
Algoritma tersebut dipatenkan oleh Massachusetts Institute of Technology pada tahun [[1983]] di [[Amerika Serikat]] sebagai {{US patent|4405829}}. Paten tersebut berlaku hingga [[21 September]] [[2000]]. Semenjak Algoritma RSA dipublikasikan sebagai aplikasi paten, regulasi di sebagian besar negara-negara lain tidak memungkinkan penggunaan paten. Hal ini menyebabkan hasil temuan Clifford Cocks di kenal secara umum, paten di Amerika Serikat tidak dapat mematenkannya.
Baris 59:
: <math>n^{ed} \equiv n \pmod{q} </math>
 
Dikarenakan ''p'' dan ''q'' merupakan bilangan prima yang berbeda, mengaplikasikan Chinese remainderRemainder theoremTheorem akan menghasilkan dua macam kongruen
: <math>n^{ed} \equiv n \pmod{pq}</math>.
 
Baris 100:
 
=== ''Padding schemes'' ===
''[[Padding Scheme]]'' harus dibangun secara hati-hati sehingga tidak ada nilai dari ''m'' yang menyebabkan masalah keamanan. Sebagai contoh, jika kita ambil contoh sederhana dari penampilan [[ASCII]] dari ''m'' dan menggabungkan [[bit|bit-bit]] secara bersama-sama akan menghasilkan ''n'', kemudian pesan yang berisi ASCII tunggal karakter <code>NUL</code> (nilai numeris 0) akan menghasilkan ''n''= 0, yang akan menghasilkan ''ciphertext'' 0 apapun itu nilai dari ''e'' dan ''N'' yang digunakan. Sama halnya dengan karakter ASCII tunggal <code>SOH</code> (nilai numeris 1) akan selalu menghasilkan ''chiphertextciphertext'' 1. Pada kenyataannya, untuk sistem yang menggunakan nilai ''e'' yang kecil, seperti 3, seluruh karakter tunggal ASCII pada pesan akan disandikan menggunakan skema yang tidak aman, dikarenakan nilai terbesar ''n'' adalah nilai 255, dan 255<sup>3</sup> menghasilkan nilai yang lebih kecil dari modulus yang sewajarnya, maka proses dekripsi akan menjadi masalah sederhana untuk mengambil pola dasar dari ''ciphertext'' tanpa perlu menggunakan modulus ''N''. Sebagai konsekuensinya, standar seperti [[PKCS]] didesain dengan sangat hati-hati sehingga membuat pesan asal-asalan dapat terenkripsi secara aman. Dan juga berdasar pada bagian [[#Kecepatan|Kecepatan]], akan dijelaskan kenapa ''m'' hampir bukanlah pesan itu sendiri tetapi lebih pada ''message key'' yang dipilh secara acak.
 
== Pengesahan pesan ==
Baris 112:
Pada tahun [[2005]], bilangan faktorisasi terbesar yang digunakan secara umum ialah sepanjang 663 bit, menggunakan metode distribusi mutakhir. Kunci RSA pada umumnya sepanjang 1024—2048 bit. Beberapa pakar meyakini bahwa kunci 1024-bit ada kemungkinan dipecahkan pada waktu dekat (hal ini masih dalam perdebatan), tetapi tidak ada seorangpun yang berpendapat kunci 2048-bit akan pecah pada masa depan yang terprediksi.
 
Semisal Eve, seorang ''eavesdropper'' (pencuri dengar—penguping), mendapatkan ''public key'' ''N'' dan ''e'', dan ''ciphertext'' ''c''. Bagimanapun juga, Eve tidak mampu untuk secara langsung memperoleh ''d'' yang dijaga kerahasiannya oleh Alice. Masalah untuk menemukan ''n'' seperti pada ''n<sup>e</sup>=c'' mod N di kenal sebagai permasalahan RSA.
 
Cara paling efektif yang ditempuh oleh Eve untuk memperoleh ''n'' dari ''c'' ialah dengan melakukan faktorisasi ''N'' kedalam ''p'' dan ''q'', dengan tujuan untuk menghitung (''p''-1)(''q''-1) yang dapat menghasilkan ''d'' dari ''e''. Tidak ada metode waktu polinomial untuk melakukan faktorisasi pada bilangan bulat berukuran besar di komputer saat ini, tapi hal tersebut pun masih belum terbukti.
Baris 138:
 
=== Kecepatan ===
RSA memiliki kecepatan yang lebih lambat dibandingkan dengan [[DES]] dan [[algoritma simetrik]] lainnya. Pada praktiknya, Bob menyandikan pesan rahasia menggunakan algoritma simetrik, menyandikan kunci simetrik menggunakan RSA, dan mengirimkan kunci simetrik yang dienkripsi menggunakan RSA dan juga mengirimkan pesan yang dienkripasidienkripsi secara simetrik kepada Alice.
 
Prosedur ini menambah permasalahan akan keamanan. Singkatnya, Sangatlah penting untuk menggunakan pembangkit bilangan acak yang kuat untuk kunci simetrik yang digunakan, karena Eve dapat melakukan ''bypass'' terhadap RSA dengan menebak kunci simterik yang digunakan.